distributed_fused_lamb.py 18.5 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
W
wuhuachaocoding 已提交
16
import paddle
17 18 19 20 21
from paddle.fluid import framework, core, layers, unique_name
from paddle.fluid.framework import Variable
from paddle.fluid.clip import ClipGradByGlobalNorm
from paddle.fluid.initializer import Constant
from paddle.fluid.layer_helper import LayerHelper
22
from paddle.fluid.optimizer import Optimizer
23
from paddle.distributed.collective import new_group
24 25
from paddle.fluid.executor import global_scope
from paddle.fluid.framework import name_scope
26
from paddle.fluid import core, unique_name
27 28 29
import numpy as np


30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def init_communicator(block, rank, ranks, ring_id):
    eps = os.environ['PADDLE_TRAINER_ENDPOINTS']
    eps = [ep.strip() for ep in eps.split(",") if ep.strip()]
    cur_ep = eps[rank]
    other_eps = [eps[r] for r in ranks if r != rank]

    local_rank = ranks.index(rank)
    comm_var_name = unique_name.generate('comm_id')
    comm_id_var = block.create_var(name=comm_var_name,
                                   persistable=True,
                                   type=core.VarDesc.VarType.RAW)
    block.append_op(type='c_gen_nccl_id',
                    inputs={},
                    outputs={'Out': comm_id_var},
                    attrs={
                        'rank': local_rank,
                        'endpoint': cur_ep,
                        'other_endpoints': other_eps,
                        'ring_id': ring_id
                    })
    block.append_op(type='c_comm_init',
                    inputs={'X': comm_id_var},
                    outputs={},
                    attrs={
                        'nranks': len(ranks),
                        'rank': local_rank,
                        'ring_id': ring_id
                    })
    tmp_var = block.create_var(name=unique_name.generate('tmp'))
    block.append_op(type='fill_constant',
                    outputs={'Out': tmp_var},
                    attrs={'value': 1})
    block.append_op(type='c_allreduce_sum',
                    inputs={'X': tmp_var},
                    outputs={'Out': tmp_var},
                    attrs={
                        'ring_id': ring_id,
                        'use_calc_stream': True
                    })
    block.append_op(type='c_sync_calc_stream',
                    inputs={'X': tmp_var},
                    outputs={'Out': tmp_var})
    return ring_id


def broadcast_parameters(block, parameters, ring_id):
    for p in parameters:
        block.append_op(type='c_broadcast',
                        inputs={'X': p},
                        outputs={'Out': p},
                        attrs={
                            'ring_id': ring_id,
                            'use_calc_stream': True
                        })


86
class DistributedFusedLamb(Optimizer):
87

88 89 90 91 92 93 94 95 96 97 98 99 100
    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 parameters=None,
                 grad_clip=None,
                 exclude_from_weight_decay_fn=None,
                 clip_after_allreduce=True,
                 is_grad_scaled_by_nranks=True,
                 alignment=128,
                 use_master_param_norm=True,
101
                 gradient_accumulation_steps=1,
102
                 use_master_acc_grad=True,
103
                 nproc_per_node=None,
104
                 use_hierarchical_allreduce=False,
105
                 name=None):
J
Jiabin Yang 已提交
106
        assert not framework._non_static_mode(
107
        ), "DistributedFusedLamb does not support dygraph mode"
108 109 110
        super(DistributedFusedLamb, self).__init__(learning_rate=learning_rate,
                                                   grad_clip=None,
                                                   name=name)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._weight_decay = lamb_weight_decay if lamb_weight_decay is not None else 0.0
        if grad_clip is not None:
            assert isinstance(
                grad_clip, ClipGradByGlobalNorm
            ), "Only ClipGradByGlobalNorm is supported in DistributedFusedLamb"
            max_global_grad_norm = grad_clip.clip_norm
        else:
            max_global_grad_norm = -1.0
        self._max_global_grad_norm = max_global_grad_norm
        self._alignment = alignment if alignment is not None else -1
        self._clip_after_allreduce = clip_after_allreduce
        self._is_grad_scaled_by_nranks = is_grad_scaled_by_nranks
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
        self._scale = None
        self._use_master_param_norm = use_master_param_norm
130
        self._gradient_accumulation_steps = gradient_accumulation_steps
131
        self._use_master_acc_grad = use_master_acc_grad
132
        self._nproc_per_node = nproc_per_node
133
        self._use_hierarchical_allreduce = use_hierarchical_allreduce
134 135
        assert self._gradient_accumulation_steps >= 1

136 137 138 139 140 141 142 143
        self.helper = LayerHelper('distributed_fused_lamb')
        self._supports_check_nan_inf = True  # very import flag for AMP

        main_block = self.helper.main_program.global_block()
        self._found_inf = main_block.create_var(
            name=unique_name.generate('found_inf'),
            shape=[1],
            dtype=core.VarDesc.VarType.BOOL)
144
        self._step = None
145

146 147 148 149 150 151 152 153
        if self._gradient_accumulation_steps > 1:
            self._stop_update = main_block.create_var(
                name=unique_name.generate('stop_update'),
                shape=[1],
                dtype=core.VarDesc.VarType.BOOL)
        else:
            self._stop_update = None

154 155
        self._param_to_master_param = {}

156 157 158
    def _get_stop_update_var(self):
        return self._stop_update if self._stop_update is not None else False

159 160 161 162 163 164 165 166
    def _set_step(self, step):
        self._step = step

    def _get_or_create_step(self):
        if self._step is None:
            self._step = self._create_persistable_var('step', dtype='int64')
        return self._step

167 168 169 170 171 172 173 174
    def _set_scale(self, scale):
        assert scale is not None
        if not isinstance(scale, Variable):
            scale = self._create_scale_from_constant(scale)
        self._scale = scale

    def _create_scale_from_constant(self, value):
        name = unique_name.generate('global_scale')
175 176 177 178 179
        return layers.create_global_var(name=name,
                                        shape=[1],
                                        dtype='float32',
                                        value=float(value),
                                        persistable=True)
180 181 182 183 184 185 186 187 188 189

    def _get_or_create_scale(self):
        if self._scale is None:
            self._scale = self._create_scale_from_constant(1.0)
        return self._scale

    def _create_persistable_var(self, name=None, shape=[-1], dtype='float32'):
        startup_block = self.helper.startup_program.global_block()
        if name is not None:
            name = unique_name.generate(name)
190 191 192 193 194
        startup_var = startup_block.create_var(name=name,
                                               shape=shape,
                                               dtype=dtype,
                                               persistable=True,
                                               stop_gradient=True)
195
        main_block = self.helper.main_program.global_block()
196 197 198 199 200
        main_var = main_block.create_var(name=startup_var.name,
                                         shape=startup_var.shape,
                                         dtype=startup_var.dtype,
                                         persistable=True,
                                         stop_gradient=True)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        return main_var

    def _get_parameter(self, name, scope=None):
        if scope is None:
            scope = global_scope()

        master_param = self._param_to_master_param.get(name)
        assert master_param is not None

        master_param_t = scope.find_var(master_param).get_tensor()
        assert master_param_t._dtype() == core.VarDesc.VarType.FP32

        param_t = scope.find_var(name).get_tensor()
        if param_t._dtype() == core.VarDesc.VarType.FP32:
            assert param_t._ptr() == master_param_t._ptr()
            return param_t, None
        else:
            assert param_t._dtype() == core.VarDesc.VarType.FP16
            assert param_t.shape() == master_param_t.shape()
            return param_t, master_param_t

    def apply_optimize(self, params_grads):
        self.apply_gradients(params_grads)

    def apply_gradients(self, params_grads):
        flattened = []
        for p, g in params_grads:
            flattened.extend([p, g])
        with flattened[0].block.program._optimized_guard(flattened), name_scope(
                "optimizer"):
            self._apply_gradients_impl(params_grads)

    def _apply_gradients_impl(self, params_grads):
        for p, g in params_grads:
            assert g.type == core.VarDesc.VarType.LOD_TENSOR, "Only support dense gradient"
            g.persistable = True  # the gradient must be persistable for fusion

        fp32_fused_param = self._create_persistable_var('fp32_fused_param')
        fp32_fused_grad = self._create_persistable_var('fp32_fused_grad')
240 241 242 243
        fp16_fused_param = self._create_persistable_var('fp16_fused_param',
                                                        dtype='float16')
        fp16_fused_grad = self._create_persistable_var('fp16_fused_grad',
                                                       dtype='float16')
244 245 246 247 248 249 250 251 252 253 254 255 256

        master_params = []
        for p, g in params_grads:
            master_p = self._create_persistable_var('master_weight')
            self._param_to_master_param[p.name] = master_p.name
            master_params.append(master_p)

        moment1 = self._create_persistable_var('moment1')
        moment1.is_distributed = True
        moment2 = self._create_persistable_var('moment2')
        moment2.is_distributed = True
        beta1pow = self._create_persistable_var('beta1pow')
        beta2pow = self._create_persistable_var('beta2pow')
257

258 259 260
        param_info = self._create_persistable_var('param_info', dtype='int32')
        param_info.is_distributed = True

261 262
        fused_offsets = self._create_persistable_var('fused_offsets',
                                                     dtype='int32')
263 264 265 266

        fp32_partial_fused_offsets = self._create_persistable_var(
            'fp32_partial_fused_offsets', dtype='int32')
        fp32_partial_fused_offsets.is_distributed = True
267

268 269 270 271
        fp16_partial_fused_offsets = self._create_persistable_var(
            'fp16_partial_fused_offsets', dtype='int32')
        fp16_partial_fused_offsets.is_distributed = True

272 273 274
        param_order = self._create_persistable_var('param_order', dtype='int32')
        param_order.is_distributed = True

275 276 277 278 279
        if self._gradient_accumulation_steps > 1:
            fp32_acc_fused_grad = [
                self._create_persistable_var('fp32_acc_fused_grad')
            ]
            fp16_acc_fused_grad = [
280 281
                self._create_persistable_var('fp16_acc_fused_grad',
                                             dtype='float16')
282 283 284 285 286 287 288
            ]
            acc_step = [self._create_persistable_var('acc_step', dtype='int64')]
        else:
            fp32_acc_fused_grad = []
            fp16_acc_fused_grad = []
            acc_step = []

289 290
        step = self._get_or_create_step()

W
wuhuachaocoding 已提交
291 292
        rank = paddle.distributed.get_rank()
        nranks = paddle.distributed.get_world_size()
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        if self._nproc_per_node is None:
            nproc_per_node = nranks
        else:
            nproc_per_node = self._nproc_per_node
        assert nranks % nproc_per_node == 0, "nranks should be exactly divided by nproc_per_node"

        shard_inside_node = (nranks > nproc_per_node)
        local_rank = rank % nproc_per_node
        node_id = int(rank / nproc_per_node)
        node_num = int(nranks / nproc_per_node)
        ring_ids = []
        startup_block = self.helper.startup_program.global_block()
        if nranks > 1:
            ring_id = init_communicator(startup_block, rank,
                                        list(range(nranks)), 0)
            ring_ids.append(ring_id)

310
        use_hierarchical_allreduce = False
311 312 313 314 315 316 317
        if node_num > 1 and len(ring_ids) <= 1 and shard_inside_node:
            local_group_ranks = list(
                range(node_id * nproc_per_node, (node_id + 1) * nproc_per_node))
            ring_id = init_communicator(startup_block, rank, local_group_ranks,
                                        1)
            ring_ids.append(ring_id)

318 319 320 321 322 323 324 325
            if self._use_hierarchical_allreduce and nranks > nproc_per_node:
                use_hierarchical_allreduce = True
                outer_group_ranks = list(
                    range(rank % nproc_per_node, nranks, nproc_per_node))
                ring_id = init_communicator(startup_block, rank,
                                            outer_group_ranks, ring_ids[-1] + 1)
                ring_ids.append(ring_id)

326 327 328 329
        scale = self._get_or_create_scale()

        params = [p for p, _ in params_grads]
        grads = [g for _, g in params_grads]
330
        apply_weight_decay = [1] * len(params)
331 332 333
        if self._exclude_from_weight_decay_fn is not None:
            for i, p in enumerate(params):
                if self._exclude_from_weight_decay_fn(p):
334
                    apply_weight_decay[i] = 0
335 336

        for g in grads:
337 338 339 340 341 342
            startup_block.create_var(name=g.name,
                                     type=g.type,
                                     dtype=g.dtype,
                                     persistable=g.persistable,
                                     shape=g.shape)

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        if nranks > 1:
            broadcast_parameters(startup_block, params, ring_ids[0])

        startup_block.append_op(
            type='distributed_fused_lamb_init',
            inputs={
                'Param': params,
                'Grad': grads,
            },
            outputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'ParamOut': params,
                'MasterParamOut': master_params,
                'GradOut': grads,
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
                'FusedParamOffsets': [fused_offsets],
                'ParamOrder': [param_order],
                'Step': [step],
            },
            attrs={
                'alignment': self._alignment,
                'rank': local_rank if shard_inside_node else rank,
                'nranks': nproc_per_node if shard_inside_node else nranks,
                'apply_weight_decay': apply_weight_decay,
                'moment1': 0.0,
                'moment2': 0.0,
                'beta1': self._beta1,
                'beta2': self._beta2,
            })
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

        main_block = self.helper.main_program.global_block()
        self._create_global_learning_rate()
        lr = None
        for p_g in params_grads:
            if lr is None:
                lr = self._create_param_lr(p_g)
            else:
                new_lr = self._create_param_lr(p_g)
                assert id(lr) == id(
                    new_lr
                ), "The learning rate for each parameter should be the same"
        assert lr is not None

        lamb_op = main_block.append_op(
            type='distributed_fused_lamb',
            inputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'LearningRate': [lr],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'Param': params,
                'Grad': grads,
                'FusedParamOffsets': [fused_offsets],
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
415
                'ParamOrder': [param_order],
416 417 418 419 420 421 422 423
            },
            outputs={
                'FP32FusedParamOut': [fp32_fused_param],
                'FP16FusedParamOut': [fp16_fused_param],
                'Moment1Out': [moment1],
                'Moment2Out': [moment2],
                'Beta1PowOut': [beta1pow],
                'Beta2PowOut': [beta2pow],
424 425 426 427
                'ParamOut':
                params,
                'GradOut':
                grads,
428
                'FoundInf': [self._found_inf],
429 430 431 432 433 434 435 436
                'FP32AccFusedGrad':
                fp32_acc_fused_grad,
                'FP16AccFusedGrad':
                fp16_acc_fused_grad,
                'AccStep':
                acc_step,
                'StopUpdate':
                self._stop_update if self._stop_update is not None else [],
437
                'Step': [step],
438 439
            },
            attrs={
440
                'weight_decay': self._weight_decay,
441 442 443 444 445 446
                'beta1': self._beta1,
                'beta2': self._beta2,
                'epsilon': self._epsilon,
                'max_global_grad_norm': self._max_global_grad_norm,
                'clip_after_allreduce': self._clip_after_allreduce,
                'rank': rank,
447 448
                'nranks': nranks,
                'ring_id': ring_ids,
449 450
                'use_master_param_norm': self._use_master_param_norm,
                'is_grad_scaled_by_nranks': self._is_grad_scaled_by_nranks,
451
                'acc_steps': self._gradient_accumulation_steps,
452
                'use_master_acc_grad': self._use_master_acc_grad,
453
                'use_hierarchical_allreduce': use_hierarchical_allreduce,
454 455
            })
        return [lamb_op]