cxx_api_bin.cc 3.0 KB
Newer Older
S
Superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
superjomn 已提交
15
#include "paddle/fluid/lite/api/cxx_api.h"
16 17

#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
superjomn 已提交
18
#include "paddle/fluid/lite/core/mir/passes.h"
19 20
#endif

S
superjomn 已提交
21 22 23 24 25 26
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {

void Run(const char* model_dir) {
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  lite::ExecutorLite predictor;
  // #ifndef LITE_WITH_CUDA
  //   std::vector<Place> valid_places({Place{TARGET(kHost),
  //   PRECISION(kFloat)}});
  // #elif defined(LITE_WITH_LIGHT_WEIGHT_FRAMEWORK)
  // #else
  //   std::vector<Place> valid_places({
  //       Place{TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)},
  //       Place{TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)},
  //       Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kNCHW)},
  //       Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNCHW)},
  //       Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kAny)},
  //       Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)},
  //   });
  // #endif

  std::vector<Place> valid_places({Place{TARGET(kARM), PRECISION(kFloat)}});
S
superjomn 已提交
44

45
  predictor.Build(model_dir, Place{TARGET(kARM), PRECISION(kFloat)},
S
superjomn 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
                  valid_places);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({100, 100})));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  LOG(INFO) << "input " << *input_tensor;

  predictor.Run();

  auto* out = predictor.GetOutput(0);
  LOG(INFO) << out << " memory size " << out->data_size();
  LOG(INFO) << "out " << out->data<float>()[0];
  LOG(INFO) << "out " << out->data<float>()[1];
  LOG(INFO) << "dims " << out->dims();
  LOG(INFO) << "out " << *out;
}

}  // namespace lite
}  // namespace paddle

S
Superjomn 已提交
70
int main(int argc, char** argv) {
S
superjomn 已提交
71 72 73 74 75 76 77 78 79 80 81
  CHECK_EQ(argc, 2) << "usage: ./cmd <model_dir>";
  paddle::lite::Run(argv[1]);

  return 0;
}

USE_LITE_OP(mul);
USE_LITE_OP(fc);
USE_LITE_OP(scale);
USE_LITE_OP(feed);
USE_LITE_OP(fetch);
82 83 84 85 86 87
// USE_LITE_OP(io_copy);
USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(scale, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(feed, kARM, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kARM, kAny, kAny, def);
S
superjomn 已提交
88 89 90 91 92 93

#ifdef LITE_WITH_CUDA
USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
#endif