cxx_api_bin.cc 2.7 KB
Newer Older
S
Superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
superjomn 已提交
15 16 17 18 19 20 21 22
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/mir/passes.h"
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {

void Run(const char* model_dir) {
Y
Yan Chunwei 已提交
23
  lite::Executor predictor;
S
superjomn 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#ifndef LITE_WITH_CUDA
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)}});
#else
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kAny)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)},
  });
#endif

  predictor.Build(model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({100, 100})));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  LOG(INFO) << "input " << *input_tensor;

  predictor.Run();

  auto* out = predictor.GetOutput(0);
  LOG(INFO) << out << " memory size " << out->data_size();
  LOG(INFO) << "out " << out->data<float>()[0];
  LOG(INFO) << "out " << out->data<float>()[1];
  LOG(INFO) << "dims " << out->dims();
  LOG(INFO) << "out " << *out;
}

}  // namespace lite
}  // namespace paddle

S
Superjomn 已提交
62
int main(int argc, char** argv) {
S
superjomn 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  CHECK_EQ(argc, 2) << "usage: ./cmd <model_dir>";
  paddle::lite::Run(argv[1]);

  return 0;
}

USE_LITE_OP(mul);
USE_LITE_OP(fc);
USE_LITE_OP(scale);
USE_LITE_OP(feed);
USE_LITE_OP(fetch);
USE_LITE_OP(io_copy);
USE_LITE_KERNEL(fc, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(scale, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(feed, kHost, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def);

#ifdef LITE_WITH_CUDA
USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
#endif