提交 9174652b 编写于 作者: S Superjomn

refactor TypeSystem

make typesystem simpler
上级 658c5432
......@@ -13,3 +13,5 @@ add_subdirectory(pybind)
add_subdirectory(train)
# NOTE: please add subdirectory inference at last.
add_subdirectory(inference)
add_subdirectory(lite)
......@@ -80,6 +80,8 @@ class Tensor {
template <typename T>
const T* data() const;
const void* raw_data() const { return holder_->ptr(); }
inline bool IsInitialized() const;
/**
......
......@@ -24,6 +24,9 @@
#include <unordered_map>
#include <vector>
#include "paddle/fluid/lite/utils/logging.h"
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
#include <glog/logging.h>
#endif
namespace paddle {
namespace inference {
......
......@@ -2,6 +2,11 @@ if (NOT WITH_LITE)
return()
endif()
message(WARNING "Enable Lite")
message(STATUS "LIGHT_FRAMEWORK: ${LITE_WITH_LIGHT_WEIGHT_FRAMEWORK}")
message(STATUS "LITE_WITH_CUDA: ${LITE_WITH_CUDA}")
message(STATUS "LITE_WITH_X86: ${LITE_WITH_X86}")
add_subdirectory(core)
add_subdirectory(x86)
add_subdirectory(host)
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/mir/passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
......@@ -45,14 +59,13 @@ void Run(const char* model_dir) {
} // namespace lite
} // namespace paddle
int main(int argc, char** argv ) {
int main(int argc, char** argv) {
CHECK_EQ(argc, 2) << "usage: ./cmd <model_dir>";
paddle::lite::Run(argv[1]);
return 0;
}
USE_LITE_OP(mul);
USE_LITE_OP(fc);
USE_LITE_OP(scale);
......
......@@ -13,7 +13,7 @@ else()
set(tensor_lite hvy_tensor)
endif()
proto_library(framework_proto SRCS framework.proto)
proto_library(framework_proto_lite SRCS framework.proto)
cc_library(kernel_lite SRCS kernel.cc DEPS type_system target_wrapper_lite)
cc_library(variable_lite SRCS variable.cc)
......@@ -22,7 +22,7 @@ cc_library(scope_lite SRCS scope.cc)
cc_library(context_lite SRCS context.cc DEPS any_lite)
cc_library(op_lite SRCS op_lite.cc DEPS scope_lite op_registry_lite compatible_pb_lite)
cc_library(types_lite SRCS types.cc)
cc_library(type_system SRCS type_system.cc DEPS ${tensor_lite})
cc_library(type_system SRCS type_system.cc DEPS ${tensor_lite} target_wrapper_lite)
cc_library(kernel_executor_lite SRCS kernel_executor.cc DEPS mir_ssa_graph kernel_lite)
cc_library(program_lite SRCS program.cc DEPS op_lite kernel_lite)
......@@ -37,14 +37,14 @@ endif()
cc_library(program_fake_utils SRCS program_fake_utils.cc DEPS mir_ssa_graph
scope_lite op_registry_lite proto_desc op_lite
ops_lite
host_kernels
${ops_lite}
${host_kernels}
)
lite_cc_test(test_scope_lite SRCS scope_test.cc DEPS scope_lite)
lite_cc_test(test_kernel_lite SRCS kernel_test.cc DEPS kernel_lite target_wrapper_x86)
lite_cc_test(test_op_lite SRCS op_lite_test.cc DEPS op_lite)
lite_cc_test(test_tensor_lite SRCS lite_tensor_test.cc DEPS lite_tensor)
lite_cc_test(test_type_system SRCS type_system_test.cc DEPS type_system)
lite_cc_test(test_type_system SRCS type_system_test.cc DEPS type_system utils_lite)
lite_cc_test(test_optimizer_lite SRCS optimizer_test.cc DEPS mir_pass_manager program_fake_utils mir_passes)
lite_cc_test(test_types_lite SRCS types_test.cc DEPS types_lite)
......@@ -83,6 +83,8 @@ class TensorHvy : public TensorBase<TensorHvy> {
return data_.data<T>();
}
const void* raw_data() const { return data_.raw_data(); }
template <typename DimT>
void Resize(const DimT& dims) {
LOG(INFO) << "dims.size " << dims.size();
......
......@@ -22,15 +22,15 @@ endif()
cc_test(test_mir_pass_manager SRCS pass_manager_test.cc DEPS mir_pass_manager mir_passes)
cc_test(test_ssa_graph SRCS ssa_graph_test.cc DEPS
mir_ssa_graph scope_lite op_lite
ops_lite
host_kernels
${ops_lite}
${host_kernels}
mir_passes
mir_pass_manager
program_fake_utils
)
set(test_variable_place_infrence_pass_DEPS
ops_lite
host_kernels
${ops_lite}
${host_kernels}
mir_passes
mir_pass_manager
optimizer_lite
......
......@@ -60,7 +60,7 @@ class RuntimeContextAssignPass : public StmtPass {
#ifdef LITE_WITH_CUDA
std::unique_ptr<KernelContext> NewCudaContext() {
std::unique_ptr<KernelContext> ctx(new KernelContext);
auto& cuda = ctx->AsCudaContext();
auto& cuda = ctx->As<CUDAContext>();
// Some initialization here.
CHECK(cublas_fp32_) << "cublas_fp32 should be set first";
cuda.blas_fp32 = cublas_fp32_;
......
......@@ -67,9 +67,8 @@ bool OpLite::Run() {
bool OpLite::Attach(const OpDesc &opdesc, lite::Scope *scope) {
// valid_places_.clear();
LOG(INFO) << "valid_places " << valid_places_.size();
CHECK(scope != nullptr);
CHECK(!op_info_.get());
// CHECK(!op_info_.get());
scope_ = scope;
op_info_.reset(new OpInfo); // Force clean the out-of-date infomation.
op_info_->Build(opdesc.ReadonlyProto());
......
......@@ -49,9 +49,7 @@ class OpInfo;
class OpLite : public Registry {
public:
OpLite() = default;
OpLite(const std::string &type) : op_type_(type) {
LOG(INFO) << "valid places " << valid_places_.size();
}
OpLite(const std::string &type) : op_type_(type) {}
OpLite(const std::vector<Place> &valid_places) : valid_places_(valid_places) {
LOG(INFO) << "valid places " << valid_places.size();
}
......
......@@ -21,6 +21,8 @@
#include "paddle/fluid/lite/core/target_wrapper.h"
#include "paddle/fluid/lite/utils/all.h"
using LiteType = paddle::lite::Type;
namespace paddle {
namespace lite {
......
......@@ -106,7 +106,7 @@ struct Instruct {
void Run() {
CHECK(op_);
CHECK(kernel_);
if (UNLIKELY(first_epoch_)) {
if (first_epoch_) {
first_epoch_ = false;
CHECK(op_->CheckShape());
}
......
......@@ -48,32 +48,27 @@ enum class DataLayoutType : int {
// Some helper macro to get a specific TargetType.
#define TARGET(item__) paddle::lite::TargetType::item__
#define TARGET_VAL(item__) static_cast<int>(TARGET(item__))
// Some helper macro to get a specific PrecisionType.
#define PRECISION(item__) paddle::lite::PrecisionType::item__
#define PRECISION_VAL(item__) static_cast<int>(PRECISION(item__))
#define DATALAYOUT(item__) paddle::lite::DataLayoutType::item__
constexpr const int kNumPrecisions = PRECISION_VAL(NUM);
constexpr const int kNumTargets = TARGET_VAL(NUM);
static const std::string target2string[] = {"unk", "host", "x86", "cuda",
"any"};
static const std::string& TargetToStr(TargetType target) {
static const std::string target2string[] = {"unk", "host", "x86", "cuda",
"any"};
auto x = static_cast<int>(target);
CHECK_LT(x, static_cast<int>(TARGET(NUM)));
return target2string[x];
}
static const std::string precision2string[] = {"unk", "float", "int8", "any"};
static const std::string& PrecisionToStr(PrecisionType precision) {
static const std::string precision2string[] = {"unk", "float", "int8", "any"};
auto x = static_cast<int>(precision);
CHECK_LT(x, static_cast<int>(PRECISION(NUM)));
return precision2string[x];
}
static const std::string datalayout2string[] = {"unk", "NCHW", "any"};
static const std::string& DataLayoutToStr(DataLayoutType layout) {
static const std::string datalayout2string[] = {"unk", "NCHW", "any"};
auto x = static_cast<int>(layout);
CHECK_LT(x, static_cast<int>(DATALAYOUT(NUM)));
return datalayout2string[x];
......
......@@ -54,7 +54,7 @@ class DDimBase {
value_type production() const {
value_type res = 1;
for (int i = 0; i < const_self()->size(); i++) {
for (size_t i = 0; i < const_self()->size(); i++) {
res *= (*const_self())[i];
}
return res;
......@@ -142,6 +142,8 @@ class TensorBase {
return const_self()->data();
}
const void *raw_data() const { return const_self()->data(); }
size_t data_size() const { return const_self()->dims().production(); }
void ShareDataWith(const TensorBase &other) { self()->ShareDataWith(other); }
......
......@@ -13,14 +13,10 @@
// limitations under the License.
#include "paddle/fluid/lite/core/type_system.h"
#include "type_system.h"
namespace paddle {
namespace lite {
// ------------------------- GetType specification ----------------------------
// ------------------------- end GetType specification ------------------------
size_t ParamTypeRegistry::KernelIdTy::hash() const {
std::hash<std::string> h;
size_t hash = h(kernel_type);
......@@ -31,26 +27,21 @@ size_t ParamTypeRegistry::KernelIdTy::hash() const {
}
std::ostream &operator<<(std::ostream &os, const Type &other) {
if (other.IsUnsupported()) {
os << "<Unsupported>";
return os;
}
if (other.IsVoid()) {
os << "<Void>";
return os;
}
if (other.IsTensor()) {
os << "<Tensor:";
} else {
os << "<";
}
os << TargetToStr(other.target()) << "/" << PrecisionToStr(other.precision())
<< "/" << DataLayoutToStr(other.layout()) << ">";
os << other.name();
return os;
}
// An map is used to maintain a global repo for types. We don't use
// MACROs with static variables for that the TypeSystem should only used in
// compile time, that is not performance sensitive, and a map-based way is
// easier to implement and maintain.
//
// The map is declared in each Type::GetXXX method other than in the Type class
// so that it will force to construct before any usage.
const Type *Type::GetTensorTy(TargetType target, PrecisionType precision,
DataLayoutType layout, int device) {
static std::map<size_t, const Type *> type_repo;
// NOTE quite naive implementation here, but not performance sensitive.
DataType::ID type_id = DataType::ID::Tensor;
......@@ -72,17 +63,16 @@ const Type *Type::GetTensorTy(TargetType target, PrecisionType precision,
name << device;
name << ">";
auto it = type_repo_.find(v);
if (it == type_repo_.end()) {
if (!type_repo[v])
// The Types should alive across the process life, no need to delete.
type_repo_[v] =
type_repo[v] =
new Type(type_id, name.str(), target, precision, layout, device);
}
return type_repo_[v];
return type_repo[v];
}
const Type *Type::GetTensorListTy(TargetType target, PrecisionType precision,
DataLayoutType layout, int device) {
static std::map<size_t, const Type *> type_repo;
DataType::ID type_id = DataType::ID::TensorList;
#define HASH_ONE(x) v = hash_combine(v, hasher(static_cast<int>(x)))
......@@ -103,28 +93,50 @@ const Type *Type::GetTensorListTy(TargetType target, PrecisionType precision,
name << device;
name << ">";
if (!type_repo_[v])
if (!type_repo[v])
// The Types should alive across the process life, no need to delete.
type_repo_[v] =
type_repo[v] =
new Type(type_id, name.str(), target, precision, layout, device);
return type_repo_[v];
return type_repo[v];
}
const Type *Type::GetUnsupportedTy() {
static std::map<size_t, const Type *> type_repo;
std::hash<int> hasher;
size_t v = hasher(static_cast<int>(DataType::ID::Unsupported));
if (!type_repo_[v])
type_repo_[v] =
if (!type_repo[v])
type_repo[v] =
new Type(DataType::ID::Unsupported, "Unsupported", TARGET(kUnk),
PRECISION(kUnk), DATALAYOUT(kUnk), -1);
return type_repo[v];
}
const Type *Type::GetVoidTy() {
static std::map<size_t, const Type *> type_repo;
std::hash<int> hasher;
size_t v = hasher(static_cast<int>(DataType::ID::Void));
if (!type_repo_[v])
type_repo_[v] = new Type(DataType::ID::Void, "Void", TARGET(kAny),
PRECISION(kAny), DATALAYOUT(kAny), -1);
if (!type_repo[v])
type_repo[v] = new Type(DataType::ID::Void, "Void", TARGET(kAny),
PRECISION(kAny), DATALAYOUT(kAny), -1);
return type_repo[v];
}
const Type *Type::Get(DataType::ID type_id, TargetType target,
PrecisionType precision, DataLayoutType layout,
int device) {
switch (type_id) {
case DataType::ID::Void:
return GetVoidTy();
case DataType::ID::Unsupported:
return GetUnsupportedTy();
case DataType::ID::Tensor:
return GetTensorTy(target, precision, layout, device);
case DataType::ID::TensorList:
return GetTensorListTy(target, precision, layout, device);
default:
LOG(FATAL) << "Unknown Type found";
return nullptr;
}
}
} // namespace lite
......
......@@ -133,6 +133,11 @@ class Type : public DataType {
/// Get an Void type.
static const Type* GetVoidTy();
static const Type* Get(DataType::ID type_id, TargetType target = TARGET(kUnk),
PrecisionType precision = PRECISION(kUnk),
DataLayoutType layout = DATALAYOUT(kUnk),
int device = 0);
TargetType target() const { return place_.target; }
PrecisionType precision() const { return place_.precision; }
DataLayoutType layout() const { return place_.layout; }
......@@ -154,12 +159,6 @@ class Type : public DataType {
DataLayoutType layout = DataLayoutType::kNCHW, short device = 0)
: DataType(id), place_{target, precision, layout, device}, name_(name) {}
// An map is used here to maintain a global repo for types. We don't use
// MACROs with static variables for that the TypeSystem should only used in
// compile time, that is not performance sensitive, and a map-based way is
// easier to implement and maintain.
static std::map<size_t, const Type*> type_repo_;
Place place_;
const std::string name_;
};
......@@ -203,22 +202,6 @@ static bool TypeCompatibleTo(const Type& a, const Type& b) {
PrecisionCompatibleTo(a, b) && DeviceCompatibleTo(a, b);
}
// -------------------------------- predefined types ---------------------------
// TODO(Superjomn) make all the Types' constructs protected to make sure there
// is only one instance across the system.
class VoidTy : public Type {
public:
VoidTy() : Type(ID::Void, "Void") {}
};
class UnsupportedTy : public Type {
public:
UnsupportedTy() : Type(ID::Unsupported, "Unsupported", false /*is_tensor*/) {}
};
const Type* LookupType(DataType::ID type_id, bool is_unknown, bool is_tensor,
Place place);
// ------------------------- end predefined types ---------------------------
/*
* ParamType is used to represent a data type of a parameter for the kernel. It
* can represent any Variable data type.
......@@ -226,13 +209,12 @@ const Type* LookupType(DataType::ID type_id, bool is_unknown, bool is_tensor,
* registered in the `TypeSystem`.
*/
struct ParamType {
Place tensor_place{};
const Type* type;
ParamType() = default;
ParamType(const Type* type) : type(type) { tensor_place = type->place(); }
ParamType(const Type* type) : type(type) {}
std::string DebugString() const { return tensor_place.DebugString(); }
std::string DebugString() const { return type->name(); }
};
/*
......
......@@ -25,6 +25,10 @@ TEST(TypeSystem, CheckDuplicateGet) {
Type::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW));
ASSERT_EQ(tensor_ty, tensor_ty1);
ASSERT_EQ(tensor_ty->target(), TARGET(kHost));
ASSERT_EQ(tensor_ty->precision(), PRECISION(kFloat));
ASSERT_EQ(tensor_ty->layout(), DATALAYOUT(kNCHW));
}
} // namespace lite
......
......@@ -50,7 +50,7 @@ class IoCopyHostToCudaCompute
param.x->target() == TARGET(kX86));
LOG(INFO) << "copy size " << param.x->data_size();
auto* data = param.y->mutable_data<int8_t>(TARGET(kCUDA));
CopyFromHostSync(data, param.x->data<int8_t>(), param.x->data_size());
CopyFromHostSync(data, param.x->raw_data(), param.x->data_size());
}
std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
......@@ -63,8 +63,9 @@ class IoCopyHostToCudaCompute
auto out_place = type->place();
out_place.target = TARGET(kCUDA);
auto* out_type = LookupType(type->id(), type->IsUnsupported(),
type->IsUnsupported(), out_place);
auto* out_type =
Type::Get(type->id(), out_place.target, out_place.precision,
out_place.layout, out_place.device);
return out_type;
};
return res;
......@@ -98,17 +99,13 @@ class IoCopyCudaToHostCompute
REGISTER_LITE_KERNEL(io_copy, kCUDA, kAny, kAny,
paddle::lite::kernels::cuda::IoCopyHostToCudaCompute,
host_to_device)
.BindInput("Input", {paddle::lite::Type::Get<paddle::lite::TensorAnyTy>(
TARGET(kHost))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorAnyTy>(
TARGET(kCUDA))})
.BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
.Finalize();
REGISTER_LITE_KERNEL(io_copy, kCUDA, kAny, kAny,
paddle::lite::kernels::cuda::IoCopyCudaToHostCompute,
device_to_host)
.BindInput("Input", {paddle::lite::Type::Get<paddle::lite::TensorAnyTy>(
TARGET(kCUDA))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorAnyTy>(
TARGET(kHost))})
.BindInput("Input", {LiteType::GetTensorTy(TARGET(kCUDA))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
.Finalize();
......@@ -25,10 +25,7 @@ namespace cuda {} // namespace cuda
REGISTER_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW,
paddle::lite::kernels::cuda::MulCompute, def)
.BindInput("X", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kCUDA))})
.BindInput("Y", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kCUDA))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kCUDA))})
.BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kCUDA))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
.Finalize();
......@@ -36,7 +36,7 @@ class MulCompute : public KernelLite<TARGET(kCUDA), PRECISION(kFloat)> {
void Run() override {
CHECK(context_) << "running context should be set first";
auto& context = context_->AsCudaContext();
auto& context = context_->As<CUDAContext>();
CHECK(context.blas_fp32) << "blas should init first";
/*
auto& blas = *context.blas_fp32;
......
......@@ -53,13 +53,8 @@ void FcCompute::Run() {
REGISTER_LITE_KERNEL(fc, kHost, kFloat, kNCHW,
paddle::lite::kernels::host::FcCompute, def)
.BindInput("Input",
{paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindInput("Bias", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindInput("W", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))})
.BindInput("Bias", {LiteType::GetTensorTy(TARGET(kHost))})
.BindInput("W", {LiteType::GetTensorTy(TARGET(kHost))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
.Finalize();
......@@ -43,8 +43,6 @@ class FeedCompute
REGISTER_LITE_KERNEL(feed, kHost, kAny, kAny,
paddle::lite::kernels::host::FeedCompute, def)
.BindInput("X", {paddle::lite::Type::Get<paddle::lite::TensorAnyTy>(
TARGET(kHost))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorAnyTy>(
TARGET(kHost))})
.BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
.Finalize();
......@@ -44,8 +44,8 @@ class FetchCompute
REGISTER_LITE_KERNEL(fetch, kHost, kAny, kAny,
paddle::lite::kernels::host::FetchCompute, def)
.BindInput("X", {paddle::lite::Type::Get<paddle::lite::TensorAnyTy>(
TARGET(kHost))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorListAnyTy>(
TARGET(kHost))})
.BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny),
DATALAYOUT(kAny), -1)})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny),
DATALAYOUT(kAny), -1)})
.Finalize();
......@@ -74,10 +74,7 @@ class MulCompute : public KernelLite<TARGET(kHost), PRECISION(kFloat)> {
REGISTER_LITE_KERNEL(mul, kHost, kFloat, kNCHW,
paddle::lite::kernels::host::MulCompute, def)
.BindInput("X", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindInput("Y", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kHost))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
.Finalize();
......@@ -52,8 +52,6 @@ class ScaleCompute : public KernelLite<TARGET(kHost), PRECISION(kFloat)> {
REGISTER_LITE_KERNEL(scale, kHost, kFloat, kNCHW,
paddle::lite::kernels::host::ScaleCompute, def)
.BindInput("X", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindOutput("Out", {paddle::lite::Type::Get<paddle::lite::TensorFp32NCHWTy>(
TARGET(kHost))})
.BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
.Finalize();
......@@ -3,7 +3,7 @@ lite_cc_test(test_model_parser_lite SRCS model_parser_test.cc DEPS model_parser_
if(LITE_WITH_LIGHT_WEIGHT_FRAMEWORK)
cc_library(compatible_pb_lite SRCS compatible_pb.cc DEPS op_desc_lite var_desc_lite)
else()
cc_library(compatible_pb_lite SRCS compatible_pb.cc DEPS framework_proto proto_desc)
cc_library(compatible_pb_lite SRCS compatible_pb.cc DEPS framework_proto_lite proto_desc)
endif(LITE_WITH_LIGHT_WEIGHT_FRAMEWORK)
set(model_parser_deps variable_lite scope_lite ${tensor_lite} scope_lite
......
cc_library(var_desc_lite SRCS var_desc.cc DEPS framework_proto)
cc_library(op_desc_lite SRCS op_desc.cc DEPS framework_proto)
cc_library(var_desc_lite SRCS var_desc.cc DEPS framework_proto_lite)
cc_library(op_desc_lite SRCS op_desc.cc DEPS framework_proto_lite)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/utils/cp_logging.h"
namespace paddle {
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
#include "paddle/fluid/lite/utils/logging.h"
#else // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
......
......@@ -22,6 +22,8 @@
#include <iostream>
#include <sstream>
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
// LOG()
#define LOG(status) LOG_##status.stream()
#define LOG_ERROR LOG_INFO
......@@ -86,3 +88,5 @@ class LogMessageFatal : public LogMessage {
} // namespace lite
} // namespace paddle
#endif // LITE_WITH_LIGHT_FRAMEWORK
......@@ -22,10 +22,13 @@
#define LITE_UNIMPLEMENTED CHECK(false) << "Not Implemented";
/*
#ifndef LIKELY
#define LIKELY(x) __builtin_expect(!!(x), 1)
#endif
#ifndef UNLIKELY
//#define UNLIKELY(x) __built_expect(!!(x), 0)
#define UNLIKELY(x) (x)
#endif
*/
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册