config_parser.py 135.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
106
print = logger.info
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

111

112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
129
        g_parameter_initializer_map={},
130
        g_extended_config_funcs={},
131 132

        # store command args of paddle_trainer
133
        g_command_config_args={},
134 135

        # Used for PyDataProvider to avoid duplicate module name
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

158

159 160
g_config_funcs = {}

161

162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

167

168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

173

174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
180

181 182
    return wrap

183

184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

187

188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

191

192 193 194
def default(x, default_value):
    return default_value if x is None else x

195

196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

202

203 204
# functions available in config file

205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

263

264
@config_func
265
def SubModelEnd(name=None):
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
269
    if name is not None:
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
273 274 275

    g_current_submodel = g_submodel_stack.pop()

276

277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
281 282
    return name + suffix

283

284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
289 290
    global g_current_submodel
    global g_add_submodel_suffix
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341
        ScatterAgentLayer(name=name, size=layer.size)
342

343 344 345 346
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

347

348 349 350 351 352 353 354 355 356 357 358 359 360
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
361
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
362 363 364 365 366 367 368 369
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
370
                             target_inlinkname="",
371
                             seq_reversed=False):
372
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
373 374 375 376 377
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
378 379 380 381 382
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
383 384 385 386 387 388 389


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
390
    for pair in g_current_submodel.memories:  #check exist
391
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
392 393
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

410

411 412 413 414 415 416
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

417

418 419
@config_class
class Bias(Cfg):
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
436 437
        self.add_keys(locals())

438

439 440 441 442 443 444 445
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
446
            initializer=None,
447 448 449 450 451 452 453 454 455 456 457 458 459
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
460
            bilinear_interp=None,
461 462 463 464
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
465
            maxout=None,
Q
qijun 已提交
466
            spp=None,
D
dangqingqing 已提交
467
            pad=None,
468 469 470 471 472
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
473
            input_layer_argument=None,
D
dangqingqing 已提交
474 475 476 477 478
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
479
        self.add_keys(locals())
D
dangqingqing 已提交
480 481 482
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
483

484

485 486 487
# Define a projection for iexed layer
@config_class
class Projection(Input):
488 489
    type = None  # subclass should set it correctly

490 491 492
    def __init__(
            self,
            input_layer_name,
493
            size=0,  # projection output size
494 495 496 497 498 499 500 501 502
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
503
            initializer=None,
504 505 506 507 508 509 510 511 512 513
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
514
            input_layer_argument=None, ):
515 516 517 518 519 520 521 522 523 524 525 526 527
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
528

529 530
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
531

532 533 534 535 536 537 538 539 540 541
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
542

543 544
    def calc_parameter_size(self, input_size, output_size):
        return 0
545

546 547 548
    def calc_parameter_dims(self, input_size, output_size):
        return []

549

550 551 552 553 554 555
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

556 557 558
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
559 560 561 562
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
563

564 565 566
    def calc_parameter_dims(self, input_size, output_size):
        return []

567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


597 598 599 600 601 602 603
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
604

605 606
    def calc_parameter_size(self, input_size, output_size):
        return output_size
607

608 609 610
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

611

X
xuwei06 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

626

627 628 629 630 631 632
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
633

634 635 636
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

637

638 639 640 641 642 643
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
644

645 646 647
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

648

649 650 651 652 653 654
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
655

656 657 658
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

659

660 661 662 663
@config_class
class ContextProjection(Projection):
    type = 'context'

664 665
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


689
@config_class
690
class ConvBaseProjection(Projection):
691 692 693 694 695
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
696
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
697 698 699 700 701 702 703 704 705 706 707 708

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
709 710
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
711 712 713 714 715 716 717

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

718

719 720 721 722 723 724 725 726 727
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
728 729
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
730

731
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
747 748
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
749 750 751

        parse_conv(
            conv_conf,
752
            self.input_layer_name,
753 754 755 756 757 758 759 760
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


761 762 763
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
764 765
    type = None  # subclass should set it correctly

766 767
    def __init__(
            self,
768
            input_layer_names, ):
769 770 771 772 773 774 775 776 777 778
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

779

780 781 782
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
783 784 785

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
804 805 806 807 808 809 810

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
811 812 813
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

814 815
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
816
                   self.operator_conf.conv_conf, num_filters)
817 818 819
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
820 821 822

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

823 824
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
825 826


827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


857 858 859
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
860 861 862 863 864 865 866 867 868 869 870 871 872
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
873 874
        self.add_keys(locals())
        if filter_size_y is None:
875
            self.filter_size_y = filter_size
876
        if padding_y is None:
877
            self.padding_y = padding
878
        if stride_y is None:
879
            self.stride_y = stride
880
        if output_x is not None:
881 882
            config_assert(output_x <= 0)

883

884 885
@config_class
class BilinearInterp(Cfg):
886
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
887 888
        self.add_keys(locals())

889

890 891
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
892 893 894 895 896 897 898 899 900 901 902
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
903
        self.add_keys(locals())
904 905


Q
qijun 已提交
906
@config_class
Q
qijun 已提交
907
class SpatialPyramidPool(Cfg):
908
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
909
        self.add_keys(locals())
910

911

D
dangqingqing 已提交
912 913 914 915 916 917
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


918 919
@config_class
class Norm(Cfg):
920 921 922 923 924 925 926 927 928
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
929 930
        self.add_keys(locals())

931

932 933
@config_class
class Image(Cfg):
934
    def __init__(self, channels, img_size=None):
935 936
        self.add_keys(locals())

937

938 939
@config_class
class BlockExpand(Cfg):
940 941 942 943 944 945 946 947 948 949 950 951
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
952 953
        self.add_keys(locals())

954

955 956
@config_class
class MaxOut(Cfg):
957
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
958 959
        self.add_keys(locals())

960

961
def create_data_config_proto(async_load_data=False,
962
                             constant_slots=None,
王益 已提交
963 964 965
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
966 967 968 969 970 971 972 973
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
974 975
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
976

977
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
978 979 980 981 982 983
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

984

985
@config_func
986 987 988 989 990
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
991
    data_config = create_data_config_proto(**xargs)
992 993 994 995 996 997 998 999 1000
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

1001

1002
@config_func
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1013
    data_config = create_data_config_proto(**xargs)
1014 1015
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
1016

1017 1018 1019
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
1020

1021 1022 1023
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
1024 1025
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
1026
        g_py_module_name_list.append(module_new_name)
1027 1028 1029 1030
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

1055

1056
@config_func
1057 1058 1059 1060 1061 1062 1063
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1064
    data_config = create_data_config_proto(**xargs)
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

1084

1085 1086
#real data for training is actually provided by "sub_data" data providers.
@config_func
1087
def MultiData(sub_data=[]):
1088 1089 1090 1091 1092
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

1093

1094
@config_func
1095 1096 1097 1098 1099 1100 1101
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
1102

1103
    data_config = create_data_config_proto(**xargs)
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

1137

1138 1139
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1140 1141 1142 1143 1144 1145 1146
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

1147

1148
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
1149
#It is the reverse function of cnn_output_size
1150
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
1151 1152 1153
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1154 1155
    return img_size

1156

1157
def get_img_size(input_layer_name, channels):
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1176
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
1177
    pool_conf.pool_type = pool.pool_type
1178 1179 1180
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
1181
                  "['max-projection', 'avg-projection', "
1182
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
1183 1184 1185 1186 1187 1188

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
1189
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
1190

1191
    pool_conf.img_size, pool_conf.img_size_y = \
1192
        get_img_size(input_layer_name, pool.channels)
1193

1194
    config_assert(not pool.start, "start is deprecated in pooling.")
1195

1196
    if pool.padding is not None:
1197
        pool_conf.padding = pool.padding
1198
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1199 1200
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1201
                                         not ceil_mode)
D
dangqingqing 已提交
1202 1203
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1204
                                         pool_conf.stride_y, not ceil_mode)
1205

1206

Q
qijun 已提交
1207
def parse_spp(spp, input_layer_name, spp_conf):
1208
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1209 1210
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
1211 1212
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1213
    spp_conf.pyramid_height = spp.pyramid_height
1214

Q
qijun 已提交
1215

1216 1217
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
1218
    image_conf.img_size, image_conf.img_size_y = \
1219
        get_img_size(input_layer_name, image_conf.channels)
1220

1221 1222 1223

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1224 1225 1226 1227 1228
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
1229 1230 1231 1232 1233 1234
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

1235
    norm_conf.img_size, norm_conf.img_size_y = \
1236
        get_img_size(input_layer_name, norm.channels)
1237
    norm_conf.output_x = norm_conf.img_size
1238
    norm_conf.output_y = norm_conf.img_size_y
1239 1240 1241
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
1242 1243
        norm_conf.scale /= norm.size**2

1244

1245 1246
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1247
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
1248 1249 1250 1251 1252 1253 1254 1255 1256
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
1257

1258
    if not trans:
1259
        conv_conf.filter_channels = conv.channels / conv.groups
1260
        conv_conf.img_size, conv_conf.img_size_y = \
1261
            get_img_size(input_layer_name, conv.channels)
1262
        conv_conf.output_x = cnn_output_size(
1263 1264
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1265 1266 1267
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1268
    else:
1269
        conv_conf.filter_channels = num_filters / conv.groups
1270
        conv_conf.output_x, conv_conf.output_y = \
1271
            get_img_size(input_layer_name, conv.channels)
1272
        conv_conf.img_size = cnn_image_size(
1273 1274
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1275
        conv_conf.img_size_y = cnn_image_size(
1276 1277
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1278

1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1293
        block_expand_conf.output_x = cnn_output_size(
1294
            block_expand.img_size_x, block_expand.block_x,
1295
            block_expand.padding_x, block_expand.stride_x, False)
1296 1297

    if block_expand_conf.img_size_y == 0:
1298
        block_expand_conf.output_y = 0
1299
    else:
1300
        block_expand_conf.output_y = cnn_output_size(
1301
            block_expand.img_size_y, block_expand.block_y,
1302
            block_expand.padding_y, block_expand.stride_y, False)
1303

1304

1305
def parse_maxout(maxout, input_layer_name, maxout_conf):
1306
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1307
    maxout_conf.groups = maxout.groups
1308

1309

1310 1311
# Define an evaluator
@config_func
Y
yangyaming 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
1354 1355
    if top_k is not None:
        evaluator.top_k = top_k
1356 1357
    if delimited is not None:
        evaluator.delimited = delimited
1358

1359 1360 1361
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

1374

1375 1376 1377 1378 1379
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
1380
            size,  # size can be 0. In this case, subclass should set it.
1381 1382 1383 1384
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1385 1386
            coeff=None,
            error_clipping_threshold=None):
1387
        config_assert('@' not in name,
1388
                      "layer name: %s contain special character @" % name)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1404
        assert isinstance(self.config, LayerConfig)
1405 1406 1407
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1408 1409
        if coeff is not None:
            self.config.coeff = float(coeff)
1410 1411 1412 1413 1414 1415 1416
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1417
        elif g_default_device is not None:
1418 1419
            self.config.device = g_default_device

C
caoying03 已提交
1420 1421 1422
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

1423 1424 1425 1426 1427 1428 1429
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
1430 1431
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
1432 1433 1434 1435 1436 1437 1438 1439
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
1440
                self.operators.append(input)
1441 1442 1443 1444
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
1445
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
1446
            config_assert(input_layer_name in g_layer_map,
1447 1448
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
1466
            bias,  # True/False or BiasCfg
1467
            size,
1468 1469 1470
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
1471 1472 1473 1474 1475 1476

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

1477 1478 1479
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
1480 1481 1482 1483 1484 1485 1486 1487 1488

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1489 1490
                assert isinstance(self.config, LayerConfig)

1491 1492 1493
                Parameter(
                    bias.parameter_name,
                    size,
1494 1495
                    self.config.device
                    if self.config.HasField('device') else None,
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
1507 1508
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
1509
                    is_static=bias.is_static,
1510 1511
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
1512 1513 1514 1515 1516
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

1517 1518 1519 1520 1521 1522
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
1537 1538
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
1539 1540
                          % (input_config.parameter_name, para.size, size))

1541 1542
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
1543 1544 1545 1546 1547 1548
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1549
            self.config.device if self.config.HasField("device") else None,
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
1562 1563
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
1564 1565 1566 1567
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
1568 1569
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
1570 1571 1572 1573 1574 1575 1576 1577 1578

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

1596

1597 1598
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
1599 1600 1601
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
1602 1603
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

1604

1605 1606
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1607 1608
    layer_type = 'fc'

L
lianxiaochen 已提交
1609 1610 1611 1612 1613 1614 1615
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1616
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1617 1618
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1619 1620 1621 1622 1623 1624 1625
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
1626 1627 1628
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
1629
            dims = [input_layer.size, self.config.size]
1630 1631
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1632 1633 1634
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
1635 1636
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
1637 1638
            if sparse:
                psize = self.inputs[input_index].nnz
1639 1640
            else:
                sparse = None
1641

1642 1643
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1644
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1645 1646
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
1647

1648

T
tensor-tang 已提交
1649 1650 1651 1652 1653
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


1654 1655
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
1686 1687
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

1700 1701
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1702 1703
        self.create_bias_parameter(bias, self.config.size)

1704

1705 1706
@config_layer('print')
class PrintLayer(LayerBase):
1707
    def __init__(self, name, inputs, format=None):
1708
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1709 1710 1711 1712 1713 1714
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1715

1716

Y
yuan 已提交
1717 1718
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1719 1720
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1721
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
1722
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1723 1724 1725 1726 1727 1728 1729
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
1730
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1731 1732 1733 1734 1735 1736
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

1737

1738 1739 1740
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1741
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1763
                 background_id, **xargs):
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


1784 1785
@config_layer('data')
class DataLayer(LayerBase):
1786
    def __init__(self, name, size, height=None, width=None, device=None):
1787 1788
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
1789 1790
        if height and width:
            self.set_layer_height_width(height, width)
1791

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
1819 1820


1821 1822
@config_layer('data_norm')
class DataNormLayer(LayerBase):
1823
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

1835

1836 1837 1838
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
1839 1840

    def __init__(self, name, inputs, partial_sum=1, **args):
1841 1842 1843
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1844 1845 1846
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
1847 1848 1849
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

1850

1851 1852 1853
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
1854 1855 1856 1857 1858 1859 1860 1861

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
1878
            (parallel_nn == 0 or self.config.device > -1)):
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
1891 1892
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
1893 1894
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1895 1896
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

1907

1908 1909 1910 1911
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

1912

1913 1914 1915 1916
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1917 1918 1919 1920

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
1921 1922 1923 1924 1925 1926 1927 1928

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1929
        super(ConvTransLayerBase, self).__init__(
1930 1931 1932 1933 1934 1935 1936 1937
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
1949 1950 1951 1952 1953 1954 1955 1956
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1957
            parse_conv(
1958 1959
                self.inputs[input_index].conv,
                input_layer.name,
1960
                self.config.inputs[input_index].conv_conf,
1961
                num_filters,
1962
                trans=True)
1963 1964 1965
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1966 1967
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
1968 1969 1970 1971 1972 1973 1974

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1975
        return conv_conf.channels * conv_conf.filter_channels \
1976 1977
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

1978

1979 1980 1981 1982
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

1983

1984 1985 1986 1987 1988
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


1989 1990
@config_layer('norm')
class NormLayer(LayerBase):
1991 1992
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
1993 1994 1995
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
1996 1997 1998 1999
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2000 2001 2002
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
2003

2004 2005 2006

@config_layer('pool')
class PoolLayer(LayerBase):
2007 2008
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
2009 2010 2011
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
2012
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2013
                       pool_conf, ceil_mode)
2014 2015
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
2016

2017

Q
qijun 已提交
2018 2019
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2020
    def __init__(self, name, inputs, **xargs):
2021
        super(SpatialPyramidPoolLayer, self).__init__(
2022
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2023 2024 2025
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
2026 2027 2028
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2029

2030

D
dangqingqing 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2050 2051
@config_layer('crop')
class CropLayer(LayerBase):
2052
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2053
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2054 2055 2056
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


2067 2068 2069
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
2070 2071 2072 2073 2074 2075 2076 2077 2078

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
2079 2080 2081 2082
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
2083 2084
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
2085 2086 2087 2088 2089 2090 2091 2092
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
2093 2094 2095 2096 2097 2098
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2099
                    is_shared=is_shared,
D
dangqingqing 已提交
2100
                    make_layer_name_in_submodel=False, ))
2101 2102 2103 2104 2105 2106

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2107
                ((not parallel_nn) or self.config.device > -1)
2108
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
2109
        super(BatchNormLayer, self).__init__(
2110
            name, self.layer_type, 0, inputs=inputs, **xargs)
2111 2112 2113 2114 2115 2116

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

2117
        input_layer = self.get_input_layer(0)
2118
        image_conf = self.config.inputs[0].image_conf
2119
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2120

2121 2122
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2123 2124
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2125
                               image_conf.channels, False)
2126 2127
        else:
            self.set_layer_size(input_layer.size)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

2140

2141 2142
@config_layer('trans')
class TransLayer(LayerBase):
2143
    def __init__(self, name, inputs, **xargs):
2144
        super(TransLayer, self).__init__(
2145
            name, 'trans', 0, inputs=inputs, **xargs)
2146 2147 2148
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
2149 2150
        self.set_layer_size(self.get_input_layer(0).size)

2151

2152 2153
@config_layer('resize')
class ResizeLayer(LayerBase):
2154
    def __init__(self, name, size, inputs, **xargs):
2155
        super(ResizeLayer, self).__init__(
2156
            name, 'resize', size=size, inputs=inputs, **xargs)
2157 2158 2159 2160
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

2161

2162 2163
@config_layer('rotate')
class RotateLayer(LayerBase):
2164
    def __init__(self, name, inputs, height, width, device=None):
2165 2166 2167 2168 2169
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
2170
        self.set_layer_height_width(height, width)
2171 2172 2173
        self.set_layer_size(self.get_input_layer(0).size)


2174 2175
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2176
    def __init__(self, name, inputs, **xargs):
2177
        super(BlockExpandLayer, self).__init__(
2178
            name, 'blockexpand', 0, inputs=inputs, **xargs)
2179 2180
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2181 2182
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
2183
                self.config.inputs[input_index].block_expand_conf)
2184 2185 2186 2187 2188 2189
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

2190

2191 2192
@config_layer('maxout')
class MaxOutLayer(LayerBase):
2193 2194 2195
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2196 2197
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
2198
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
2199 2200 2201
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
                           g_layer_map[input_layer.name].width, out_channels)
2202

2203

D
dangqingqing 已提交
2204 2205 2206 2207
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2208
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2209 2210
        config_assert(
            len(self.inputs) == 1,
2211
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2221 2222
@config_layer('clip')
class ClipLayer(LayerBase):
2223 2224
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2225 2226
        config_assert(
            len(self.inputs) == 1,
2227 2228
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2229 2230
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2231 2232
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2233 2234


2235 2236 2237 2238
# key: cost type
# value: cost class
g_cost_map = {}

2239

2240 2241 2242
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
2243 2244
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
2245

2246
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
2247 2248 2249
    global g_cost_map
    g_cost_map[cost_type] = cls

2250

2251 2252 2253 2254 2255 2256 2257
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2258
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2259
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2260
define_cost('SmoothL1Cost', 'smooth_l1')
2261

2262

2263 2264
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
2265
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
2266 2267
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
2268 2269 2270
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
2271 2272 2273 2274 2275 2276 2277 2278
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
2304 2305


2306 2307
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
2308
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
2309 2310
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
2311
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
2312 2313
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
2314 2315 2316
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
2317 2318
        self.config.max_sort_size = max_sort_size

2319

L
Luo Tao 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


2331 2332
@config_layer('nce')
class NCELayer(LayerBase):
2333 2334 2335 2336 2337 2338 2339 2340
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
2341
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
2342 2343
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
2344 2345
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
2346 2347 2348 2349
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
2350
            s = sum(neg_sampling_dist)
2351 2352 2353
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
2354 2355 2356 2357 2358

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
2359
        input_layer = self.get_input_layer(num_real_inputs)
2360 2361 2362 2363
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

2364 2365
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
2379
    def __init__(self, name, inputs, bias=True, **xargs):
2380 2381
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
2382
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2383 2384 2385 2386 2387
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2388

2389 2390
@config_layer('agent')
class AgentLayer(LayerBase):
2391 2392 2393 2394
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

2395 2396 2397

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
2398
    def __init__(self, name, size, device=None):
2399 2400 2401
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

2402

2403 2404
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2405
    def __init__(self, name, size, device=None):
2406 2407 2408
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

2409

2410 2411
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
2412 2413 2414 2415 2416
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
2417
        for i in range(1, len(inputs)):
2418 2419 2420 2421 2422
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

2423 2424

@config_func
2425 2426 2427 2428
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
2429 2430 2431 2432
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

2433

2434 2435
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2436 2437 2438 2439
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2463
    agent_layer = AgentLayer(agent_name, size)
2464
    config_assert(g_current_submodel.is_recurrent_layer_group,
2465
                  'Memory should be used in recurrent layer group only')
2466
    memory = g_current_submodel.memories.add()
2467 2468
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
2469
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
2470
    options = sum((boot_layer is not None, bool(boot_bias),
2471
                   boot_with_const_id is not None))
2472 2473 2474 2475
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
2476 2477 2478
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
2479 2480
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
2481 2482 2483
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
2484
            boot_bias, size, for_self=False)
2485 2486 2487 2488 2489
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
2513 2514 2515 2516
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
2517 2518 2519 2520 2521 2522 2523 2524 2525
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

2526

2527 2528
@config_layer('expand')
class ExpandLayer(LayerBase):
2529
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
2530
        super(ExpandLayer, self).__init__(
2531
            name, 'expand', 0, inputs=inputs, **xargs)
2532 2533 2534 2535 2536 2537 2538 2539
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

2540 2541 2542

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
2543 2544 2545 2546 2547
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
2548 2549
                 bias=False,
                 **xargs):
2550
        super(FeatMapExpandLayer, self).__init__(
2551
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
2552 2553 2554
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
2555
            self.config.num_filters = num_filters
2556
        else:
2557
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
2558 2559
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
2560
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
2561 2562 2563 2564


@config_layer('max')
class MaxLayer(LayerBase):
2565 2566 2567 2568 2569
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2570
                 output_max_index=None,
2571
                 stride=-1,
2572
                 **xargs):
2573
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
2574
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2575 2576
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
2577
        self.config.trans_type = trans_type
2578
        self.config.seq_pool_stride = stride
2579 2580 2581 2582
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2583 2584
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
2585 2586 2587 2588


@config_layer('maxid')
class MaxIdLayer(LayerBase):
2589
    def __init__(self, name, inputs, beam_size=None, device=None):
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
2607
    def __init__(self, name, inputs, eos_id, device=None):
2608 2609 2610
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
2611
        self.set_layer_size(2)  # boolean output
2612 2613
        self.config.eos_id = eos_id

2614

2615 2616
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
2617 2618 2619 2620
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
2621
                 bias=False,
2622
                 stride=-1,
2623
                 **xargs):
2624
        super(SequenceLastInstanceLayer, self).__init__(
2625
            name, 'seqlastins', 0, inputs=inputs, **xargs)
2626 2627
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2628
        if trans_type == 'seq':
2629
            config_assert(stride == -1, 'subseq does not support stride window')
2630
        self.config.trans_type = trans_type
2631 2632
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
2633 2634
        self.create_bias_parameter(bias, self.config.size)

2635

2636 2637
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2638 2639 2640 2641 2642
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2643
                 stride=-1,
2644
                 **xargs):
2645
        super(SequenceFirstInstanceLayer, self).__init__(
2646 2647 2648 2649 2650 2651
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
2652 2653
        self.config.select_first = True

2654

2655 2656
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
2657
    def __init__(self, name, inputs, bias=False, **xargs):
2658
        super(SequenceConcatLayer, self).__init__(
2659
            name, 'seqconcat', 0, inputs=inputs, **xargs)
2660 2661
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
2662 2663 2664 2665 2666
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2667

2668 2669
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
2670
    def __init__(self, name, size, inputs, bias=False, **xargs):
2671
        super(SequenceReshapeLayer, self).__init__(
2672
            name, 'seqreshape', size, inputs=inputs, **xargs)
2673 2674
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
2675 2676 2677
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

2678

2679 2680
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
2681
    def __init__(self, name, inputs, bias=False, **xargs):
2682
        super(SubSequenceLayer, self).__init__(
2683
            name, 'subseq', 0, inputs=inputs, **xargs)
2684 2685 2686 2687 2688 2689
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

2690

C
caoying03 已提交
2691 2692
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
2705
        super(SubNestedSequenceLayer, self).__init__(
2706 2707 2708 2709 2710
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
2711 2712 2713 2714 2715
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


2716 2717
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
2718 2719 2720
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
2721 2722 2723 2724 2725
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

2726

2727 2728
@config_layer('power')
class PowerLayer(LayerBase):
2729 2730 2731
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
2732 2733 2734 2735
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
2736 2737 2738
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

2739 2740 2741

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
2742 2743 2744
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
2745 2746 2747 2748 2749 2750
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

2751

2752 2753
@config_layer('scaling')
class ScalingLayer(LayerBase):
2754 2755 2756
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
2757 2758 2759 2760
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
2761 2762 2763
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

2764 2765 2766

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
2767 2768 2769
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
2770 2771 2772 2773
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

2774

2775 2776
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
2777
    def __init__(self, name, size, inputs, device=None):
2778
        super(ConvexCombinationLayer, self).__init__(
2779 2780 2781
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2782 2783 2784
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
2785 2786
        self.set_layer_size(size)

2787

2788 2789
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
2790
    def __init__(self, name, inputs, device=None):
2791 2792
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
2793 2794
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
2795 2796 2797 2798 2799 2800 2801 2802
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

2803

2804 2805
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
2806
    def __init__(self, name, inputs, **xargs):
2807
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2808
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
2809
        input_layer = self.get_input_layer(0)
2810 2811 2812 2813
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
2814

L
liaogang 已提交
2815

2816 2817
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
2818
    def __init__(self, name, inputs, device=None):
2819
        super(SumToOneNormLayer, self).__init__(
2820 2821 2822
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
2823 2824 2825
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

2826

G
guosheng 已提交
2827 2828
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
2829
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
2830
        super(RowL2NormLayer, self).__init__(
2831
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2832
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
2833 2834
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
2835 2836


2837 2838
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
2839
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
2840
        super(CosSimVecMatLayer, self).__init__(
2841
            name, 'cos_vm', size, inputs=inputs, device=device)
2842
        self.config.cos_scale = cos_scale
2843 2844
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2845 2846 2847
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
2848

2849

2850 2851
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
2852
    def __init__(self, name, inputs, device=None):
2853 2854
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
2855 2856
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
2869 2870 2871 2872 2873
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
2874
                 bias=False,
2875
                 stride=-1,
2876
                 **xargs):
2877
        super(AverageLayer, self).__init__(
2878
            name, 'average', 0, inputs=inputs, **xargs)
2879
        self.config.average_strategy = average_strategy
2880 2881
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
2882
        self.config.trans_type = trans_type
2883
        self.config.seq_pool_stride = stride
2884 2885 2886 2887 2888 2889
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2890

2891 2892
@config_layer('cos')
class CosSimLayer(LayerBase):
2893
    def __init__(self, name, inputs, cos_scale=1, device=None):
2894 2895 2896 2897 2898 2899
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2900
        self.config.cos_scale = cos_scale
2901 2902 2903 2904


@config_layer('tensor')
class TensorLayer(LayerBase):
2905
    def __init__(self, name, size, inputs, bias=True, **xargs):
2906
        super(TensorLayer, self).__init__(
2907
            name, 'tensor', size, inputs=inputs, **xargs)
2908 2909
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
2910 2911
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
2922
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2940
            if self.config.size == 0:
2941 2942 2943
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2944
            else:
2945 2946
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
2947 2948 2949 2950
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
2951 2952 2953 2954
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
2955 2956 2957
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2958
            if self.config.size == 0 and isinstance(input, Projection):
2959 2960 2961
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2962
            elif isinstance(input, Projection):
2963 2964 2965 2966 2967 2968
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
2980 2981
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2993 2994 2995 2996 2997 2998
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
2999

3000 3001 3002
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3003

3004

3005 3006
# like MixedLayer, but no bias parameter
@config_func
3007
def ExpressionLayer(name, inputs, **xargs):
3008 3009
    MixedLayer(name, inputs, bias=False, **xargs)

3010

3011 3012
@config_layer('concat')
class ConcatenateLayer(LayerBase):
3013
    def __init__(self, name, inputs, bias=False, **xargs):
3014
        config_assert(inputs, 'inputs cannot be empty')
3015
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
3016 3017 3018 3019 3020 3021
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
3022
            if self.config.size == 0:
3023 3024 3025 3026
                size += input_layer.size

        self.set_layer_size(size)

3027

3028 3029 3030
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
3031
    def __init__(self, name, inputs, bias=False, **xargs):
3032 3033 3034
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3035 3036

        if isinstance(self.inputs[0], ConvProjection):
3037 3038 3039 3040 3041 3042
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3043

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
3064
                                              input.proj_conf.output_size)
3065
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
3066
                                             input.proj_conf.output_size)
3067 3068
            self.create_input_parameter(input_index, psize, dims)

3069 3070 3071 3072 3073 3074 3075
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3076 3077 3078
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3079

3080

3081 3082
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
3083
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3084 3085
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
3086 3087 3088 3089 3090 3091 3092 3093 3094
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

3095

3096 3097
@config_layer('lstmemory')
class LstmLayer(LayerBase):
3098 3099 3100 3101 3102 3103 3104 3105
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
3106 3107 3108 3109 3110 3111 3112 3113
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
3114
        self.config.active_gate_type = active_gate_type
3115 3116 3117 3118 3119
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

3120

3121 3122
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
3133 3134 3135
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
3136 3137 3138 3139 3140
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
3141 3142 3143
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

3144

3145 3146 3147
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
3148 3149 3150 3151
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
3152 3153 3154 3155
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

3156

3157 3158
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
3159 3160 3161 3162 3163 3164 3165 3166
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3167 3168
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
3169 3170 3171 3172
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3173 3174
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
3175
        size = input_layer.size / (3 + dim_num)
3176
        self.set_layer_size(size)
3177
        self.config.active_gate_type = active_gate_type
3178 3179 3180
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3181 3182
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
3183
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
3184 3185
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

3186 3187 3188

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
3200 3201 3202 3203 3204 3205
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
3206
        self.config.active_gate_type = active_gate_type
3207 3208 3209
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

3210

3211 3212
@config_layer('gru_step')
class GruStepLayer(LayerBase):
3213 3214 3215 3216 3217 3218 3219
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3220 3221
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
3222 3223 3224
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
3225 3226 3227 3228 3229
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
3230
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
3231 3232
        self.create_bias_parameter(bias, size * 3)

3233

3234 3235 3236 3237 3238 3239 3240
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
3241 3242


3243 3244
@config_layer('crf')
class CRFLayer(LayerBase):
3245
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
3246
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
3247 3248
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3249
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
3250 3251
        self.config.coeff = coeff

3252

3253 3254 3255 3256 3257 3258 3259 3260
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
3261 3262


3263 3264
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
3265
    def __init__(self, name, size, inputs, device=None):
3266 3267 3268 3269 3270
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3271
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
3272

3273

3274 3275
@config_layer('ctc')
class CTCLayer(LayerBase):
3276
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
3277 3278 3279 3280
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

3281

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


3313 3314
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
3315
    def __init__(self, name, device=None):
3316 3317 3318 3319 3320 3321
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
3322
def Layer(name, type, **xargs):
3323 3324 3325 3326
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
3327
    config_assert(layer_func, "layer type '%s' not supported." % type)
3328
    return layer_func(name, **xargs)
3329

3330

3331
@config_func
3332
def ParameterHook(type, **kwargs):
3333
    if type == 'pruning':
3334 3335
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3336
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3337 3338
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
3339
        return hook
3340 3341 3342 3343
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
3344 3345 3346 3347 3348
    else:
        return None


@config_func
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
3370 3371
              update_hooks=None,
              initializer=None):
3372 3373 3374 3375 3376 3377 3378

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

3390 3391
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3392 3393 3394 3395 3396

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

3397 3398 3399 3400
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3401

3402 3403
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3404 3405 3406
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

3407 3408 3409 3410 3411 3412
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
3413 3414
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3415 3416
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
3417 3418
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
3419 3420 3421 3422 3423 3424
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
3425 3426 3427
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
3428 3429 3430 3431
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3432 3433 3434 3435 3436 3437 3438

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
3439 3440 3441 3442
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3443 3444
    if is_shared is not None:
        para.is_shared = is_shared
3445 3446 3447 3448 3449

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3450
            update_hooks = update_hooks()
3451 3452 3453 3454 3455

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3456
            para.update_hooks.extend([update_hooks])
3457 3458

    g_parameter_map[name] = para
3459 3460 3461 3462 3463
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
3464 3465 3466 3467 3468 3469 3470


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

3471

3472 3473 3474 3475 3476
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

3477

3478 3479 3480 3481 3482
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

3483

3484 3485 3486 3487 3488
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

3489

3490 3491 3492 3493 3494
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

3495

3496 3497 3498 3499 3500
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

3501

3502 3503 3504 3505 3506
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

3507

3508 3509 3510 3511 3512
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

3513

3514 3515 3516 3517 3518
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

3519

3520 3521 3522 3523 3524
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

3525

3526 3527 3528 3529 3530
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

3531

3532 3533 3534 3535 3536
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
3537 3538 3539
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

3540 3541
    return Import

3542

3543
DEFAULT_SETTING = dict(
3544 3545 3546 3547 3548
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3549
    gradient_clipping_threshold=None,
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
3572 3573 3574
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
3575

3576
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3577

3578
settings_deprecated = dict(usage_ratio=1., )
3579 3580 3581 3582

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
3583 3584
    start_pass=0, )

3585 3586 3587 3588 3589

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
3590 3591
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

3603

3604 3605 3606 3607
@config_func
def cluster_config(**args):
    pass

3608

3609 3610 3611 3612 3613 3614 3615 3616 3617
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

3618

3619 3620 3621 3622
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
3623

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
3639
        get_config_arg=make_get_config_arg(config_args), )
3640 3641 3642 3643 3644

    funcs.update(g_extended_config_funcs)

    return funcs

3645

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

3662

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

3675

3676 3677 3678 3679
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3680

3681
_parse_config_hooks = set()
Y
Yu Yang 已提交
3682 3683


3684 3685 3686 3687 3688 3689 3690
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
3691

Y
Yu Yang 已提交
3692

3693
def update_g_config():
3694
    '''
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3718
def begin_parse():
3719
    init_config_environment()
3720 3721
    for hook in _parse_config_hooks:
        hook()
3722 3723 3724 3725 3726

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3736 3737 3738 3739
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3740

3741
    begin_parse()
X
xuwei06 已提交
3742 3743
    config_args = {}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3756 3757
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3758
            make_config_environment("", config_args))
3759
        trainer_config()
3760
    else:
3761 3762
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
3763

3764
    return update_g_config()
3765 3766


3767
def parse_config_and_serialize(trainer_config, config_arg_str):
3768
    try:
3769
        config = parse_config(trainer_config, config_arg_str)
3770 3771 3772 3773 3774 3775
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

3776

3777 3778 3779 3780 3781 3782 3783 3784
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise
反馈
建议
客服 返回
顶部