learning_rate_scheduler.py 44.7 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
import math
16
import warnings
M
minqiyang 已提交
17

M
minqiyang 已提交
18
from .. import unique_name
19 20
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
21

22
__all__ = [
M
minqiyang 已提交
23
    'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay',
24
    'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay', 'LinearLrWarmup',
25
    'ReduceLROnPlateau', 'StepDecay', 'MultiStepDecay', 'LambdaDecay'
26
]
M
minqiyang 已提交
27 28 29 30 31


class LearningRateDecay(object):
    """
    Base class of learning rate decay
32

33 34 35
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
36 37
    """

M
minqiyang 已提交
38 39 40
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
41 42 43 44 45
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
46
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
47
        self.step_num += self.step_size
M
minqiyang 已提交
48 49
        return lr

M
minqiyang 已提交
50
    def create_lr_var(self, lr):
51 52 53
        """
        convert lr from float to variable

54
        Args:
55 56 57 58
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
59
        from .. import layers
M
minqiyang 已提交
60 61 62 63 64
        lr = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
Z
Zeng Jinle 已提交
65
            persistable=False)
M
minqiyang 已提交
66
        return lr
M
minqiyang 已提交
67

68
    # Note: If you want to change what optimizer.state_dict stores, just overwrite this functions,
69
    # "self.step_num" will be stored by default.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def state_dict(self):
        """
        Returns the state of the scheduler as a :class:`dict`.

        It is a subset of self.__dict__ .
        """
        self._state_keys()
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Variable):
                assert value.shape == [
                    1
                ], "shape of Variable in state_dict must be [1] {}".format(
                    value.shape)
                value = value.numpy()[0]
            state_dict[key] = value

        return state_dict

    def _state_keys(self):
        """
        set the keys in self.__dict__ that are needed to be saved.
        """
        self.keys = ['step_num']

98
    def set_state_dict(self, state_dict):
99 100 101 102 103 104 105 106 107
        """
        Loads the schedulers state.
        """
        self._state_keys()
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
108 109
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict"
                    .format(key))
110 111 112 113 114
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

115 116 117
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

M
minqiyang 已提交
118 119 120 121
    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
122
class PiecewiseDecay(LearningRateDecay):
123
    """
124
    :api_attr: imperative
125

D
DuYao 已提交
126
    Piecewise decay scheduler.
127 128 129 130 131

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
132 133 134 135 136 137 138 139 140 141
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
142
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
D
DuYao 已提交
143 144
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
145
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
146
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
147
            The default value is 1.
D
DuYao 已提交
148 149
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
150

151
    Returns:
D
DuYao 已提交
152
        None.
153

154 155 156 157 158 159 160
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
161
              emb = fluid.dygraph.Embedding( [10, 10] )
162
              optimizer = fluid.optimizer.SGD(
163 164
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
165 166
    """

M
minqiyang 已提交
167 168
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
        super(PiecewiseDecay, self).__init__(begin, step, dtype)
M
minqiyang 已提交
169 170 171 172 173
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
174
            self.vars.append(value)
M
minqiyang 已提交
175 176

    def step(self):
M
minqiyang 已提交
177 178
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
179
                return self.vars[i]
180
        return self.create_lr_var(self.vars[len(self.values) - 1])
181 182 183


class NaturalExpDecay(LearningRateDecay):
184
    r"""
185 186
    :api_attr: imperative

187
    Applies natural exponential decay to the initial learning rate.
188

D
DuYao 已提交
189
    The algorithm can be described as following.
190

D
DuYao 已提交
191 192
    .. math::

193
        decayed\_learning\_rate = learning\_rate * e^{y}
D
DuYao 已提交
194 195 196 197 198 199 200 201 202 203 204

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

205
        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps})
D
DuYao 已提交
206 207

    Parameters:
208 209
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
210 211 212
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
213
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
214 215 216
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
217
            The default value is 1.
D
DuYao 已提交
218 219
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
220

221
    Returns:
D
DuYao 已提交
222
        None.
223

224 225 226
    Examples:
        .. code-block:: python

227 228 229 230 231 232 233 234 235 236 237
            import paddle.fluid as fluid
            base_lr = 0.1
            with fluid.dygraph.guard():
                emb = fluid.dygraph.Embedding([10, 10])
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())
238 239 240

    """

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(NaturalExpDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)
260 261
        decayed_lr = self.learning_rate * layers.exp(
            -1 * self.decay_rate * div_res)
262 263 264 265 266

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
267
    r"""
268 269
    :api_attr: imperative

270 271
    Applies exponential decay to the learning rate.

D
DuYao 已提交
272
    The algorithm can be described as following.
273

D
DuYao 已提交
274
    .. math::
275

276
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
D
DuYao 已提交
277 278 279 280 281

    If staircase is set to False, then:

    .. math::

282
        y = \\frac{global\_step}{decay\_steps}
D
DuYao 已提交
283 284 285 286 287 288 289 290 291

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
292 293
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
294 295 296
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
297
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
298 299 300
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
301
            The default value is 1.
D
DuYao 已提交
302 303
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
304

305
    Returns:
D
DuYao 已提交
306
        None.
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
    	            learning_rate=fluid.dygraph.ExponentialDecay(
		        learning_rate=base_lr,
    		        decay_steps=10000,
		        decay_rate=0.5,
		        staircase=True))

    """

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(ExponentialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
349
    r"""
350 351
    :api_attr: imperative

352 353
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
354 355 356 357 358
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

359
        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}
D
DuYao 已提交
360 361 362 363 364 365 366 367

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
368 369
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
370 371 372
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
373
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
374 375 376
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
377
            The default value is 1.
378
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be
D
DuYao 已提交
379
            'float32', 'float64'. The default value is 'float32'.
380

381
    Returns:
D
DuYao 已提交
382
        None.
383

384 385 386 387 388 389
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
390
              emb = fluid.dygraph.Embedding([10, 10])
391 392 393 394 395
              sgd_optimizer = fluid.optimizer.SGD(
	          learning_rate=fluid.dygraph.InverseTimeDecay(
		        learning_rate=base_lr,
		        decay_steps=10000,
		        decay_rate=0.5,
396 397
		        staircase=True),
                  parameter_list = emb.parameters())
398 399 400

    """

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(InverseTimeDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
427
    r"""
428 429
    :api_attr: imperative

430 431
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
432 433 434 435 436 437
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

438
        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
439

D
DuYao 已提交
440 441 442 443 444 445
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

446
        global\_step & = min(global\_step, decay\_steps)
D
DuYao 已提交
447 448 449 450

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
451 452
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
453
            float32 or float64. It also can be set to python int number.
454
        decay_steps(int): The decay step size. It determines the decay cycle.
D
DuYao 已提交
455 456 457 458 459
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
460
            The default value is 1.
D
DuYao 已提交
461 462
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
463

464
    Returns:
D
DuYao 已提交
465
        None.
466

467 468 469 470 471 472 473 474
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
475
              emb = fluid.dygraph.Embedding( [10, 10])
476 477
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
478 479
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
480 481 482

    """

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 end_learning_rate=0.0001,
                 power=1.0,
                 cycle=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(PolynomialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
        from .. import layers
M
minqiyang 已提交
501 502
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
503 504
        if self.cycle:
            div_res = layers.ceil(
M
minqiyang 已提交
505
                self.create_lr_var(tmp_step_num / float(self.decay_steps)))
506

M
minqiyang 已提交
507 508
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
509
            tmp_decay_steps = self.decay_steps * div_res
510
        else:
511 512 513
            tmp_step_num = self.create_lr_var(
                tmp_step_num if tmp_step_num < self.decay_steps else self.
                decay_steps)
M
minqiyang 已提交
514 515 516 517

        decayed_lr = (self.learning_rate - self.end_learning_rate) * \
            ((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate
        return decayed_lr
518

M
minqiyang 已提交
519 520

class CosineDecay(LearningRateDecay):
521
    r"""
522 523
    :api_attr: imperative

524 525
    Applies cosine decay to the learning rate.

D
DuYao 已提交
526
    The algorithm can be described as following.
527 528 529

    .. math::

D
DuYao 已提交
530
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
531

D
DuYao 已提交
532
    Parameters:
533 534
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
535 536 537 538 539
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
540
            The default value is 1.
D
DuYao 已提交
541 542
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
543

544
    Returns:
D
DuYao 已提交
545
        None.
546

547 548 549 550 551 552 553 554 555 556
    Examples:
	.. code-block:: python

  	    base_lr = 0.1
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
        	    learning_rate = fluid.dygraph.CosineDecay(
	                    base_lr, 10000, 120) )
    """

M
minqiyang 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    def __init__(self,
                 learning_rate,
                 step_each_epoch,
                 epochs,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(CosineDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
        from .. import layers
        cur_epoch = layers.floor(
            self.create_lr_var(self.step_num / self.step_each_epoch))
        decayed_lr = self.learning_rate * 0.5 * (
            layers.cos(cur_epoch * math.pi / self.epochs) + 1)
        return decayed_lr


class NoamDecay(LearningRateDecay):
579
    r"""
580 581
    :api_attr: imperative

582
    Applies Noam decay to the initial learning rate.
D
DuYao 已提交
583 584 585 586 587

    The algorithm can be described as following.

    .. math::

588
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
589

590
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
D
DuYao 已提交
591 592

    Parameters:
593
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
D
DuYao 已提交
594
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
595
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
D
DuYao 已提交
596 597 598
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
599
            The default value is 1.
D
DuYao 已提交
600 601
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
602 603 604
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
605

606
    Returns:
D
DuYao 已提交
607
        None.
608

609 610 611 612 613 614 615
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
616
              emb = fluid.dygraph.Embedding([10, 10])
617 618 619
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
620 621
                         warmup_steps),
                  parameter_list = emb.parameters())
622 623
    """

624 625 626 627 628 629 630
    def __init__(self,
                 d_model,
                 warmup_steps,
                 begin=1,
                 step=1,
                 dtype='float32',
                 learning_rate=1.0):
M
minqiyang 已提交
631
        super(NoamDecay, self).__init__(begin, step, dtype)
632
        self.learning_rate = learning_rate
M
minqiyang 已提交
633 634 635 636 637
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
M
minqiyang 已提交
638 639
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
640 641
        lr_value = self.learning_rate * (self.d_model**
                                         -0.5) * layers.elementwise_min(a, b)
M
minqiyang 已提交
642
        return lr_value
H
hong 已提交
643 644 645 646


class LinearLrWarmup(LearningRateDecay):
    """
647 648
    :api_attr: imperative

H
hong 已提交
649 650
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
651

H
hong 已提交
652
    When global_step < warmup_steps, learning rate is updated as:
653

H
hong 已提交
654
    .. code-block:: text
655

H
hong 已提交
656 657
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
658

H
hong 已提交
659
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
660

H
hong 已提交
661
    When global_step >= warmup_steps, learning rate is updated as:
662

H
hong 已提交
663
    .. code-block:: text
664

H
hong 已提交
665
            lr = learning_rate
666

H
hong 已提交
667
    where lr is the learning_rate after warm-up.
668

H
hong 已提交
669 670 671 672 673 674 675
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
676
            The default value is 1.
H
hong 已提交
677 678
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
679

H
hong 已提交
680 681
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
682 683


H
hong 已提交
684
    Examples:
685

H
hong 已提交
686
    .. code-block:: python
687

H
hong 已提交
688
        import paddle.fluid as fluid
689 690

        learning_rate = 0.1
H
hong 已提交
691
        warmup_steps = 50
692
        start_lr = 0
H
hong 已提交
693 694
        end_lr = 0.1

695
        with fluid.dygraph.guard():
H
hong 已提交
696
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
697 698


H
hong 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    """

    def __init__(self,
                 learning_rate,
                 warmup_steps,
                 start_lr,
                 end_lr,
                 begin=1,
                 step=1,
                 dtype='float32'):
        super(LinearLrWarmup, self).__init__(begin, step, dtype)
        type_check = isinstance(learning_rate, float) or isinstance(
            learning_rate, int) or isinstance(learning_rate, LearningRateDecay)
        if not type_check:
            raise TypeError(
714 715
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}"
                .format(learning_rate))
H
hong 已提交
716 717
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
718
        self.start_lr = start_lr
Z
Zeng Jinle 已提交
719 720
        assert end_lr > start_lr, "end_lr {} must be greater than start_lr {}".format(
            end_lr, start_lr)
721 722
        self.lr_ratio_before_warmup = (float(end_lr) -
                                       float(start_lr)) / float(warmup_steps)
H
hong 已提交
723 724 725 726 727 728 729 730

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
        if self.step_num < self.warmup_steps:
731
            return self.lr_ratio_before_warmup * self.step_num + self.start_lr
H
hong 已提交
732 733
        else:
            return base_lr
734 735 736 737


class ReduceLROnPlateau(LearningRateDecay):
    """
738 739
    :api_attr: imperative

740
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
741 742
    by 2 to 10 times once model performance has no longer improvement.

743 744 745
    The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss``
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
746 747 748 749 750 751 752
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
753 754
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
755
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
756
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
757
            It should be less than 1.0. Default: 0.1.
758
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
759 760
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
761
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
762 763
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
764
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
765 766 767 768 769 770
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
771 772
            'float32', 'float64'. Default: 'float32'.

773 774 775 776
    Returns:
        Reduced learning rate.

    Examples:
777

778 779 780 781 782 783 784 785 786 787 788 789 790 791
    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
792
                                    verbose = True,
793 794 795 796 797 798 799 800 801 802 803 804
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
                    loss = fluid.layers.reduce_mean(out)
                    total_loss += loss
                    adam.minimize(loss)
805

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
                print("current avg_loss is %s, current lr is %s" % (avg_loss.numpy()[0], lr))

    """

    def __init__(self,
                 learning_rate,
                 mode='min',
                 decay_rate=0.1,
                 patience=10,
                 verbose=False,
                 threshold=1e-4,
                 threshold_mode='rel',
                 cooldown=0,
                 min_lr=0,
                 eps=1e-8,
                 dtype='float32'):
        super(ReduceLROnPlateau, self).__init__(dtype=dtype)
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
837
        self.decay_rate = self.create_lr_var(decay_rate)
838 839 840 841 842 843 844 845

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
            raise ValueError('threshold mode ' + threshold_mode +
                             ' is unknown!')
        self.threshold_mode = threshold_mode
        check_type(learning_rate, 'learning_rate', (float, int, Variable),
                   'ReduceLROnPlateau')
846 847 848 849
        if not isinstance(learning_rate, (float, int, Variable)):
            raise TypeError(
                "The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float, int, Variable', but received %s."
                % type(learning_rate))
850 851 852 853 854 855 856 857 858 859 860 861 862

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
863 864
        self.epoch_num = 0

865
    # "cooldown_counter / best_loss / num_bad_epochs / epoch_num / learning_rate" will be stored.
866 867 868 869 870
    def _state_keys(self):
        self.keys = [
            'cooldown_counter', 'best_loss', 'num_bad_epochs', 'epoch_num',
            'learning_rate'
        ]
871 872

    def __call__(self):
873 874
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
875 876 877 878
        return self.learning_rate

    def step(self, loss):
        """
879
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
880 881 882
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
883 884 885
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
                be 1-D Tensor with shape [1].
886 887 888
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
889

890 891 892 893 894 895 896 897
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

        # loss must be 1-D Tensor with shape [1]
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
        assert len(loss.shape) == 1 and loss.shape[0] == 1, "the loss.shape " \
            "should be (1L,), but the current loss.shape is {}. Maybe that "  \
898
            "you should call paddle.mean to process it first.".format(loss.shape)
899

900
        self.epoch_num += 1
901 902 903 904 905 906 907 908 909 910 911 912 913
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                from .. import layers
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
914 915
                new_lr = layers.elementwise_max(
                    self.learning_rate * self.decay_rate, self.min_lr)
916 917
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
918 919 920
                        old_lr = self.learning_rate.numpy()[0] if isinstance(
                            self.learning_rate,
                            Variable) else self.learning_rate
921
                        print('Epoch {}: reducing learning rate from {} to {}.'.
922 923
                              format(self.epoch_num, old_lr,
                                     new_lr.numpy()[0]))
924 925 926 927 928 929 930 931 932 933 934 935 936 937
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold
938 939 940 941 942 943 944


class _LearningRateEpochDecay(LearningRateDecay):
    """
    :api_attr: imperative

    Base class of learning rate decay, which is updated each epoch.
945

946 947 948 949 950 951 952 953 954 955
    Define the common interface of an _LearningRateEpochDecay.
    User should not use this class directly,
    but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
    """

    def __init__(self, learning_rate, dtype=None):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' must be 'float, int', but received %s."
                % type(learning_rate))
956 957
        if learning_rate < 0:
            raise ValueError("Invalid learning rate: {}".format(learning_rate))
958 959 960 961

        self.base_lr = float(learning_rate)

        self.epoch_num = -1
962
        self.dtype = dtype
963 964 965 966 967 968
        if dtype is None:
            self.dtype = "float32"
        self.learning_rate = self.create_lr_var(self.base_lr)

        self.epoch()

969 970
    # For those subclass who overload _LearningRateEpochDecay, "self.epoch_num/learning_rate" will be stored by default.
    # you can change it for your subclass.
971 972 973
    def _state_keys(self):
        self.keys = ['epoch_num', 'learning_rate']

974
    def __call__(self):
975
        """
976 977
        Return last computed learning rate on current epoch.
        """
978 979
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
        return self.learning_rate

    def epoch(self, epoch=None):
        """
        compueted learning_rate and update it when invoked.
        """
        if epoch is None:
            self.epoch_num += 1
        else:
            self.epoch_num = epoch

        self.learning_rate = self.get_lr()

    def get_lr(self):
        raise NotImplementedError


class StepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.

1003
    The algorithm can be described as the code below.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        decay_rate = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1018
        step_size (int): Period of learning rate decay.
1019
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1020 1021 1022 1023 1024 1025 1026
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(9):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
1041
                        adam.minimize(loss)
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.05
                    # epoch:6, current lr is 0.005
                    # epoch:7, current lr is 0.005
                    # epoch:8, current lr is 0.005

    """

    def __init__(self, learning_rate, step_size, decay_rate=0.1):
        if not isinstance(step_size, int):
            raise TypeError(
                "The type of 'step_size' must be 'int', but received %s." %
                type(step_size))
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.step_size = step_size
        self.decay_rate = decay_rate
        super(StepDecay, self).__init__(learning_rate)

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        i = self.epoch_num // self.step_size
        return self.base_lr * (decay_rate**i)


class MultiStepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.

1081
    The algorithm can be described as the code below.
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        decay_rate = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Parameters:
1096
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1097
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
1098
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1099 1100 1101 1102 1103 1104 1105
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.005

    """

    def __init__(self, learning_rate, milestones, decay_rate=0.1):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
                % type(milestones))

        if not all([
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
        ]):
            raise ValueError('The elements of milestones must be incremented')
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.milestones = milestones
        self.decay_rate = decay_rate
        super(MultiStepDecay, self).__init__(learning_rate)

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        for i in range(len(self.milestones)):
            if self.epoch_num < self.milestones[i]:
                return self.base_lr * (decay_rate**i)

        return self.base_lr * (decay_rate**len(self.milestones))
1158 1159 1160 1161 1162 1163 1164 1165 1166


class LambdaDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Sets the learning rate of ``optimizer`` to the initial lr times a multiplicative factor, and this multiplicative
    factor is computed by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

1167
    The algorithm can be described as the code below.
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1180
        lr_lambda (function): A function which computes a multiplicative factor given an integer parameter ``epoch`` , and
1181
            then multiply the initial learning rate by this multiplicative factor.
1182

1183 1184 1185 1186 1187
    Returns:
        None.

    Examples:
        .. code-block:: python
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.475
                    # epoch:2, current lr is 0.45125

    """

    def __init__(self, learning_rate, lr_lambda):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
                % type(lr_lambda))

        self.lr_lambda = lr_lambda
        super(LambdaDecay, self).__init__(learning_rate)

    def get_lr(self):
        base_lr = self.create_lr_var(self.base_lr)

        return self.base_lr * self.lr_lambda(self.epoch_num)