clip.py 35.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

F
fengjiayi 已提交
15
import copy
16
import six
17
import warnings
F
fengjiayi 已提交
18

Y
Yu Yang 已提交
19
import functools
W
WangXi 已提交
20
import paddle
21 22
from . import layers
from . import framework
F
fengjiayi 已提交
23
from . import core
C
Chengmo 已提交
24
from . import name_scope
25
from .dygraph import base as imperative_base
W
WangXi 已提交
26
from .data_feeder import check_variable_and_dtype
27
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
W
WangXi 已提交
28
from .layer_helper import LayerHelper
29
from .framework import default_main_program
30
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
31

F
fengjiayi 已提交
32
__all__ = [
33 34
    'set_gradient_clip', 'ErrorClipByValue', 'ClipGradByValue',
    'ClipGradByNorm', 'ClipGradByGlobalNorm'
F
fengjiayi 已提交
35
]
Y
Yu Yang 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
_clip_by_global_norm_using_mp_type_flag = False


def _clip_by_global_norm_using_mp_type(*args):
    global _clip_by_global_norm_using_mp_type_flag
    assert len(args) <= 1
    if len(args) == 1:
        assert isinstance(args[0], bool)
        old_value = _clip_by_global_norm_using_mp_type_flag
        _clip_by_global_norm_using_mp_type_flag = args[0]
        return old_value
    else:
        return _clip_by_global_norm_using_mp_type_flag


def _cast_to_mp_type_if_enabled(x):
    if x.dtype == core.VarDesc.VarType.FP16 and _clip_by_global_norm_using_mp_type(
    ):
        return x.astype(core.VarDesc.VarType.FP32)
    else:
        return x

Y
Yu Yang 已提交
59

W
WangXi 已提交
60 61 62 63 64
def _squared_l2_norm(x):
    r"""
    This OP returns the squared L2 norm of a tensor.
    """

65
    x = _cast_to_mp_type_if_enabled(x)
66
    if core.is_compiled_with_xpu() or x.dtype == core.VarDesc.VarType.FP16:
W
WangXi 已提交
67 68 69 70
        square = layers.square(x)
        sum_square = layers.reduce_sum(square)
        return sum_square

71
    if in_dygraph_mode():
72
        return _C_ops.squared_l2_norm(x)
73 74
    elif _in_legacy_dygraph():
        return _legacy_C_ops.squared_l2_norm(x)
W
WangXi 已提交
75 76

    op_type = 'squared_l2_norm'
77
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], op_type)
W
WangXi 已提交
78 79 80 81 82 83 84 85 86
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": x}
    outputs = {'Out': out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out


F
fengjiayi 已提交
87
class BaseErrorClipAttr(object):
88

F
fengjiayi 已提交
89 90 91
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
92
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
93 94 95 96
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
97
    r"""
98 99
    Clips tensor values to the range [min, max].

100 101
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
102 103 104 105 106 107 108

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
109
        will be set to ``-max`` by framework.
110 111 112 113

    Examples:
        .. code-block:: python

114 115 116 117 118 119
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
120 121
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
122 123
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
124 125
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
126 127 128 129 130 131 132
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
133 134
    """

F
fengjiayi 已提交
135 136 137 138 139 140 141 142 143
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
144 145 146
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
147
    def _append_clip_op(self, block, grad_name):
148 149 150 151
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
152 153
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
154 155 156 157 158 159


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
160
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
161
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
162
        error_clip = getattr(fwd_var, "error_clip", None)
163 164
        if not (error_clip is None
                or isinstance(error_clip, BaseErrorClipAttr)):
F
fengjiayi 已提交
165 166 167
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
168
        if error_clip is not None:
Y
yuyang18 已提交
169
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
170 171


172
class ClipGradBase(object):
173

174 175
    def __init__(self):
        super(ClipGradBase, self).__init__()
176

F
fengjiayi 已提交
177 178 179
    def __str__(self):
        raise NotImplementedError()

180
    @imperative_base.no_grad
181 182
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
183

184 185
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
186

187
    def __call__(self, params_grads):
J
Jiabin Yang 已提交
188
        if framework._non_static_mode():
189 190 191 192 193 194
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
195
                        "set 'need_clip' in 'ParamAttr'. So, 'set_gradient_clip' "
196 197 198
                        "is redundant and you can remove it.")
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
199

Y
yuyang18 已提交
200
    def _process_context(self, context, param, grad):
201
        raise NotImplementedError()
Y
Yu Yang 已提交
202

Y
yuyang18 已提交
203
    def _create_operators(self, param, grad):
204
        raise NotImplementedError()
Y
Yu Yang 已提交
205 206


207
class ClipGradByValue(ClipGradBase):
208
    """
209
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
210

211
    - Any values less than min are set to ``min``.
212

213
    - Any values greater than max are set to ``max``.
214

215
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
216
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
217 218

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
219
    (for example: :ref:`api_paddle_optimizer_SGD`).
220 221

    Note:
222
        ``need_clip`` of ``ClipGradByValue`` HAS BEEN DEPRECATED since 2.0.
223
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
224

225 226
    Args:
        max (float): The maximum value to clip by.
227
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max``
228
            automatically. In this case, ``max`` must be greater than 0.
229 230 231

    Examples:
        .. code-block:: python
232

233
            import paddle
234

235
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
236 237
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
238
                                      bias_attr=paddle.ParamAttr(need_clip=False))
239 240 241 242
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

243
            clip = paddle.nn.ClipGradByValue(min=-1, max=1)
244 245
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
246 247
    """

248 249
    def __init__(self, max, min=None):
        super(ClipGradByValue, self).__init__()
Y
Yu Yang 已提交
250
        if min is None:
251
            assert (max > 0.0)
Y
Yu Yang 已提交
252
            min = -max
253 254
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
255

F
fengjiayi 已提交
256
    def __str__(self):
257
        return "Clip Gradient By Value, min = %f, max=%f" % (self.min, self.max)
258

259
    @imperative_base.no_grad
260 261 262 263 264
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
265
            if getattr(p, 'need_clip', True) is False:
266 267
                params_and_grads.append((p, g))
                continue
H
hong 已提交
268
            new_grad = paddle.clip(x=g, min=self.min, max=self.max)
269 270 271 272 273
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
274
        param_new_grad_name_dict = dict()
275 276 277 278
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
279
                if getattr(p, 'need_clip', True) is False:
280 281 282 283 284 285
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
286 287
                param_new_grad_name_dict[p.name] = new_grad.name
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
288
        return params_and_grads
F
fengjiayi 已提交
289

Y
yuyang18 已提交
290
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
291 292
        pass

Y
yuyang18 已提交
293
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
294 295 296 297
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


298
class ClipGradByNorm(ClipGradBase):
299
    r"""
300
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
301

302
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
303

304
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
305

306 307
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
308 309

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
310
    (for example: :ref:`api_paddle_optimizer_SGD`).
311

312
    The clipping formula is:
313 314

    .. math::
315
        Out =
316 317 318 319 320 321
        \left\{
            \begin{array}{ccl}
                X & & if (norm(X) \leq clip\_norm) \\
                \frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\
        \end{array}
        \right.
322 323 324 325


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

326
    .. math::
327
        norm(X) = ( \sum_{i=1}^{n}|x\_i|^2)^{ \frac{1}{2}}
328

329
    Note:
330
        ``need_clip`` of ``ClipGradByNorm`` HAS BEEN DEPRECATED since 2.0.
331 332
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

333
    Args:
334
        clip_norm(float): The maximum norm value.
C
Chengmo 已提交
335

336 337
    Examples:
        .. code-block:: python
338

339
            import paddle
340

341
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
342 343
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
344
                                      bias_attr=paddle.ParamAttr(need_clip=False))
345 346 347 348
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

349
            clip = paddle.nn.ClipGradByNorm(clip_norm=1.0)
350 351
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
352 353
    """

354 355
    def __init__(self, clip_norm):
        super(ClipGradByNorm, self).__init__()
356
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
357

F
fengjiayi 已提交
358
    def __str__(self):
359 360
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

361
    @imperative_base.no_grad
362 363 364 365 366
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
367
            if getattr(p, 'need_clip', True) is False:
368 369 370 371 372 373 374 375 376
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
377
            param_new_grad_name_dict = dict()
378 379 380
            for p, g in params_grads:
                if g is None:
                    continue
381
                if getattr(p, 'need_clip', True) is False:
382 383 384 385 386
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
387
                param_new_grad_name_dict[p.name] = new_grad.name
388
                params_and_grads.append((p, new_grad))
389
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
390
        return params_and_grads
F
fengjiayi 已提交
391

Y
yuyang18 已提交
392
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
393 394
        pass

Y
yuyang18 已提交
395
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
396 397 398 399
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


400 401 402 403 404 405 406 407 408 409 410 411 412 413
_allow_pure_fp16_global_norm_clip_flag = False


def _allow_pure_fp16_global_norm_clip(*args):
    global _allow_pure_fp16_global_norm_clip_flag
    if len(args) == 0:
        return _allow_pure_fp16_global_norm_clip_flag
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        old_value = _allow_pure_fp16_global_norm_clip_flag
        _allow_pure_fp16_global_norm_clip_flag = args[0]
        return old_value


414
class ClipGradByGlobalNorm(ClipGradBase):
415
    r"""
416
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in
417
    :math:`t\_list` , and limit it to ``clip_norm`` .
418

419
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
420

421
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
422

423 424
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
425 426

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
427
    (for example: :ref:`api_paddle_optimizer_SGD`).
428 429

    The clipping formula is:
430 431 432

    .. math::

433
        t\_list[i] = t\_list[i] * \frac{clip\_norm}{\max(global\_norm, clip\_norm)}
434 435 436 437 438 439 440

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

441
    Note:
442
        ``need_clip`` of ``ClipGradyGlobalNorm`` HAS BEEN DEPRECATED since 2.0.
443 444
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

445
    Args:
446
        clip_norm (float): The maximum norm value.
447
        group_name (str, optional): The group name for this clip. Default value is ``default_group``.
448 449 450

    Examples:
        .. code-block:: python
451

452 453
            import paddle

454
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
455 456
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
457
                                      bias_attr=paddle.ParamAttr(need_clip=False))
458 459 460 461
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

462
            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
463 464
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
465 466
    """

467 468 469 470
    def __init__(self,
                 clip_norm,
                 group_name="default_group",
                 auto_skip_clip=False):
471
        super(ClipGradByGlobalNorm, self).__init__()
472
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
473
        self.group_name = group_name
474 475
        assert isinstance(auto_skip_clip, bool)
        self.auto_skip_clip = auto_skip_clip
476

F
fengjiayi 已提交
477
    def __str__(self):
478 479
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

480
    @imperative_base.no_grad
481 482 483
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
484 485
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
486 487 488
        for p, g in params_grads:
            if g is None:
                continue
489
            if getattr(p, 'need_clip', True) is False:
490 491
                continue
            merge_grad = g
492 493 494 495 496 497

            if in_dygraph_mode() and g.is_selected_rows():
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = merge_grad._get_tensor_from_selected_rows()

            elif g.type == core.VarDesc.VarType.SELECTED_ROWS:
498 499
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
W
WangXi 已提交
500 501

            sum_square = _squared_l2_norm(merge_grad)
502 503 504 505 506 507
            if sum_square.dtype == core.VarDesc.VarType.FP16:
                sum_square_list_fp16.append(sum_square)
            elif sum_square.dtype == core.VarDesc.VarType.FP32:
                sum_square_list_fp32.append(sum_square)
            else:
                sum_square_list.append(sum_square)
508 509

        # all parameters have been filterd out
510 511
        if len(sum_square_list) + len(sum_square_list_fp16) + len(
                sum_square_list_fp32) == 0:
512 513
            return params_grads

514 515 516
        sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"
        global_norm_var = []
        if len(sum_square_list_fp16) > 0:
Z
zhangbo9674 已提交
517
            global_norm_var_fp16 = paddle.add_n(sum_square_list_fp16)
518 519
            global_norm_var.append(global_norm_var_fp16.astype(sum_dtype))
        if len(sum_square_list_fp32) > 0:
Z
zhangbo9674 已提交
520
            global_norm_var_fp32 = paddle.add_n(sum_square_list_fp32)
521 522 523 524 525
            if sum_dtype == 'float32':
                global_norm_var.append(global_norm_var_fp32)
            else:
                global_norm_var.append(global_norm_var_fp32.astype(sum_dtype))
        if len(sum_square_list) > 0:
Z
zhangbo9674 已提交
526
            global_norm_var_fp64 = paddle.add_n(sum_square_list)
527
            global_norm_var.append(global_norm_var_fp64)
Z
zhangbo9674 已提交
528
        global_norm_var = paddle.add_n(global_norm_var)
529
        global_norm_var = layers.sqrt(global_norm_var)
530 531 532
        max_global_norm = layers.fill_constant(shape=[1],
                                               dtype=global_norm_var.dtype,
                                               value=self.clip_norm)
Z
zhangbo9674 已提交
533 534

        need_clip = False
535 536
        if not self.auto_skip_clip:  # always apply clip
            need_clip = True
537 538 539 540
            clip_var = layers.elementwise_div(x=max_global_norm,
                                              y=layers.elementwise_max(
                                                  x=global_norm_var,
                                                  y=max_global_norm))
541 542
        elif global_norm_var > max_global_norm:
            # only when global_norm_var > max_global_norm, grad need clip
Z
zhangbo9674 已提交
543
            need_clip = True
544 545
            clip_var = layers.elementwise_div(x=max_global_norm,
                                              y=global_norm_var)
546

547 548 549
        for p, g in params_grads:
            if g is None:
                continue
550
            if getattr(p, 'need_clip', True) is False:
551 552
                params_and_grads.append((p, g))
                continue
W
WangXi 已提交
553
            # TODO(wangxi): use inplace elementwise_mul
Z
zhangbo9674 已提交
554
            if need_clip:
555 556
                clip_input = (clip_var.astype('float16') if g.dtype
                              == core.VarDesc.VarType.FP16 else clip_var)
557
                new_grad = layers.elementwise_mul(g, clip_input)
Z
zhangbo9674 已提交
558 559 560
                params_and_grads.append((p, new_grad))
            else:
                params_and_grads.append((p, g))
561 562 563 564 565 566

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
567 568
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
569 570 571 572
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
573
                if getattr(p, 'need_clip', True) is False:
574 575 576 577 578 579 580
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
                            merge_grad)
W
WangXi 已提交
581
                    sum_square = _squared_l2_norm(merge_grad)
582 583 584 585 586 587
                    if sum_square.dtype == core.VarDesc.VarType.FP16:
                        sum_square_list_fp16.append(sum_square)
                    elif sum_square.dtype == core.VarDesc.VarType.FP32:
                        sum_square_list_fp32.append(sum_square)
                    else:
                        sum_square_list.append(sum_square)
588 589

            # all parameters have been filterd out
590 591
            if len(sum_square_list) + len(sum_square_list_fp16) + len(
                    sum_square_list_fp32) == 0:
592 593 594
                return params_grads

            with p.block.program._optimized_guard([p, g]):
595 596 597 598 599
                sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"

                global_norm_var = []
                if len(sum_square_list_fp16) > 0:
                    global_norm_var_fp16 = layers.sums(sum_square_list_fp16)
600 601 602 603 604 605
                    if sum_square_list_fp32 or sum_square_list or not _allow_pure_fp16_global_norm_clip(
                    ):
                        global_norm_var.append(
                            global_norm_var_fp16.astype(sum_dtype))
                    else:
                        global_norm_var.append(global_norm_var_fp16)
606 607 608 609 610 611 612 613 614 615 616
                if len(sum_square_list_fp32) > 0:
                    global_norm_var_fp32 = layers.sums(sum_square_list_fp32)
                    if sum_dtype == 'float32':
                        global_norm_var.append(global_norm_var_fp32)
                    else:
                        global_norm_var.append(
                            global_norm_var_fp32.astype(sum_dtype))
                if len(sum_square_list) > 0:
                    # fp64
                    global_norm_var_other_dtype = layers.sums(sum_square_list)
                    global_norm_var.append(global_norm_var_other_dtype)
617 618 619

                global_norm_var = layers.sums(global_norm_var) if len(
                    global_norm_var) > 1 else global_norm_var[0]
620 621
                global_norm_var = layers.sqrt(x=global_norm_var)
                max_global_norm = layers.fill_constant(
622 623 624
                    shape=[1],
                    dtype=global_norm_var.dtype,
                    value=self.clip_norm)
625 626 627 628
                scale_var = layers.elementwise_div(x=max_global_norm,
                                                   y=layers.elementwise_max(
                                                       x=max_global_norm,
                                                       y=global_norm_var))
629
            param_new_grad_name_dict = dict()
630 631 632
            for p, g in params_grads:
                if g is None:
                    continue
633
                if getattr(p, 'need_clip', True) is False:
634 635 636 637
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
638
                    new_g = _cast_to_mp_type_if_enabled(g)
W
WangXi 已提交
639
                    # inplace
640 641
                    scale_input = (scale_var.astype('float16') if
                                   new_g.dtype == core.VarDesc.VarType.FP16 and
642 643
                                   scale_var.dtype != core.VarDesc.VarType.FP16
                                   else scale_var)
644 645 646 647 648
                    # NOTE(Yuang Liu): For pure dp with gradient merge, the p and g
                    # will be in different blocks with the gradient clip related ops.
                    # We need to handle the correct block, otherwise will encounter
                    # a 'NotFoundError' during compile time.
                    block = default_main_program().current_block()
649 650 651 652 653 654
                    block.append_op(type='elementwise_mul',
                                    inputs={
                                        'X': new_g,
                                        'Y': scale_input
                                    },
                                    outputs={'Out': new_g})
655
                    if new_g is not g:
656 657 658 659 660 661 662
                        block.append_op(type='cast',
                                        inputs={'X': new_g},
                                        outputs={'Out': g},
                                        attrs={
                                            'in_dtype': new_g.dtype,
                                            'out_dtype': g.dtype
                                        })
663

W
WangXi 已提交
664 665
                param_new_grad_name_dict[p.name] = g.name
                params_and_grads.append((p, g))
666

667
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
668
        return params_and_grads
F
fengjiayi 已提交
669

Y
yuyang18 已提交
670
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
671 672 673 674
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
675
                shape=[1], dtype=grad.dtype, value=self.clip_norm)
F
update  
fengjiayi 已提交
676 677 678 679 680
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
681

C
chengduo 已提交
682 683 684 685 686
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

W
WangXi 已提交
687
        local_norm_var = _squared_l2_norm(merge_grad)
F
update  
fengjiayi 已提交
688
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
689

F
update  
fengjiayi 已提交
690
        self.context = context
691

Y
yuyang18 已提交
692
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
693 694 695
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
696
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
697
            clip_var = self.context[self.group_name + "_clip"]
698 699 700 701
            group_scale_var = layers.elementwise_div(x=clip_var,
                                                     y=layers.elementwise_max(
                                                         x=clip_var,
                                                         y=group_norm_var))
702
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
703
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
704

W
WangXi 已提交
705
        # inplace
706 707 708 709 710 711
        param.block.append_op(type='elementwise_mul',
                              inputs={
                                  'X': grad,
                                  'Y': self.context[group_scale_name]
                              },
                              outputs={'Out': grad})
C
chengduo 已提交
712

W
WangXi 已提交
713
        return param, grad
F
fengjiayi 已提交
714 715


716
@framework.dygraph_not_support
F
fengjiayi 已提交
717
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
718
    """
719
    :api_attr: Static Graph
720

721
    Warning:
722 723 724

        This API must be used after building network, and before ``minimize`` ,
        and it may be removed in future releases, so it is not recommended.
725 726
        It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
        this is a better method to clip gradient. There are three clipping strategies:
727
         :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
728
         :ref:`api_fluid_clip_GradientClipByValue` .
729

730 731 732
    To specify parameters that require gradient clip.

    Args:
733 734 735 736
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no
737
            gradient clipping.
Z
Zeng Jinle 已提交
738
        param_list (list(Variable), optional): Parameters that require gradient clip.
739
                It can be a list of parameter or a list of parameter's name.
740
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
741
        program (Program, optional): The program where parameters are located.
742 743 744 745 746 747 748
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
749

750 751 752
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
753 754
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

780
            # network 3: clip parameter gradient by value
781 782 783 784 785 786 787 788 789
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
790

791
            # network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
792 793 794 795 796 797 798
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
799 800
                sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
                sgd.minimize(loss)
801
                # 'set_gradient_clip' will not take effect when setting has a conflict,
802
                # and the gradient clipping strategy will be 'clip2'
803 804


F
fengjiayi 已提交
805
    """
806 807
    warnings.warn("Caution! 'set_gradient_clip' is not recommended "
                  "and may be deprecated in future! "
808 809
                  "We recommend a new strategy: set 'grad_clip' "
                  "when initializing the 'optimizer'. "
810
                  "This method can reduce the mistakes, please "
811
                  "refer to documention of 'optimizer'.")
812

813
    if not isinstance(clip, ClipGradBase):
F
fengjiayi 已提交
814
        raise TypeError(
815
            "'clip' should be an instance of ClipGradBase's derived class")
F
fengjiayi 已提交
816 817
    if program is None:
        program = framework.default_main_program()
818 819 820 821 822 823 824 825 826 827

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
                "op_namescope"):
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
828 829
    if param_list is None:
        param_list = program.block(0).all_parameters()
830
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
831 832 833 834 835 836 837
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
838
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
839 840


841
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
842
    context = dict()
843 844 845
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
846
        with p.block.program._optimized_guard(
847
            [p, g]), framework.name_scope('gradient_clip'):
848
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
849
            if clip_attr is None:
850
                return param_grads
851
            if not isinstance(clip_attr, ClipGradBase):
Y
yuyang18 已提交
852
                raise TypeError(
853
                    "clip attribute should be an instance of GradientClipBase")
Y
Yu Yang 已提交
854

Y
yuyang18 已提交
855
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
856 857

    res = []
858
    param_new_grad_name_dict = dict()
859 860 861
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
862
        with p.block.program._optimized_guard(
863
            [p, g]), framework.name_scope('gradient_clip'):
864
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
865
            param_new_grad_name_dict[param.name] = new_grad.name
866
            res.append([param, new_grad])
Y
Yu Yang 已提交
867

868
    _correct_clip_op_role_var(res, param_new_grad_name_dict)
869 870 871 872
    return res


# change wrong mapping relation between param & grad in clip op
873
# Note: This function is sensitive to the time cost of the network with gradient clipping
874
# and should not be changed easily. If you must change, please test the time cost.
875 876 877 878
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
    block_id_list = []
    if len(param_new_grad_name_dict) == 0:
        return
879 880
    for param, grad in params_grads:
        if grad is None:
881
            continue
882 883 884 885
        block_id = param.block.idx
        if block_id in block_id_list:
            continue
        block_id_list.append(block_id)
886
        for op in param.block.program.global_block().ops:
W
WangXi 已提交
887
            if op.has_attr("op_namescope") and "gradient_clip" in op.attr(
888 889 890 891 892 893
                    "op_namescope") and op.attr('op_role_var'):
                param_name = op.attr('op_role_var')[0]
                if param_name in param_new_grad_name_dict:
                    correct_p_g = [
                        param_name, param_new_grad_name_dict[param_name]
                    ]
C
Chengmo 已提交
894
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
895 896


897 898 899 900
GradientClipBase = ClipGradBase
GradientClipByValue = ClipGradByValue
GradientClipByNorm = ClipGradByNorm
GradientClipByGlobalNorm = ClipGradByGlobalNorm