unsqueeze_op.cc 18.1 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/unsqueeze_op.h"
16

17
#include <memory>
18 19
#include <string>
#include <vector>
20

21
#include "paddle/fluid/framework/op_registry.h"
22 23 24 25

namespace paddle {
namespace operators {

26
class UnsqueezeOp : public framework::OperatorWithKernel {
27
 public:
28 29 30 31
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
32 33 34
                      platform::errors::InvalidArgument(
                          "Input(X) of "
                          "Unsqueeze operator should not be null."));
35
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
36 37 38
                      platform::errors::InvalidArgument(
                          "Output(Out) of "
                          "Unsqueeze operator should not be null."));
39

40 41
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
42
    // Validity Check: input tensor dims (<6).
43
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
44 45 46 47
                      platform::errors::InvalidArgument(
                          "Invalid "
                          "dimensions, the rank of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)"));
48 49 50 51 52 53 54 55 56 57 58 59
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
60 61
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
62
      std::vector<int> vec_out_dims(output_size, -1);
63
      ctx->SetOutputDim("Out", pten::make_ddim(vec_out_dims));
64 65
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
66 67 68 69 70 71 72 73 74 75 76 77 78
      PADDLE_ENFORCE_EQ(axes_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "Input(AxesTensor)'s dimension of "
                            "Op(unsqueeze) must be 1. "
                            "But received AxesTensor's shape = [%s], "
                            "AxesTensor's dimension = %d.",
                            axes_dims, axes_dims.size()));
      PADDLE_ENFORCE_GE(
          axes_dims[0], 0,
          platform::errors::InvalidArgument(
              "Input(AxesTensor)'s shape must be known. But received "
              "AxesTensor's shape = [%s]",
              axes_dims));
79 80
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
81 82
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
83
      std::vector<int> vec_out_dims(output_size, -1);
84
      ctx->SetOutputDim("Out", pten::make_ddim(vec_out_dims));
85
    }
86 87
  }

88
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
89
                                        const framework::DDim &in_dims) {
90 91
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
92 93 94
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
95
    PADDLE_ENFORCE_LE(output_size, 6,
96 97
                      platform::errors::InvalidArgument(
                          "The output tensor's rank should be less than 6."));
98 99

    for (int axis : unsqz_dims) {
100
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
101
      // Vaildity Check: the axis bound
102 103 104 105 106 107 108
      PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
                                    "The insert dimension value should "
                                    "not be less than 0"));
      PADDLE_ENFORCE_LE(cur, cur_output_size,
                        platform::errors::InvalidArgument(
                            "The insert dimension value shoud not be larger "
                            "than the dimension size of input tensor"));
109 110 111 112 113 114 115 116 117
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
118
      // Add the output size.
119
      cur_output_size++;
120 121
    }

122
    // Make output shape
123 124
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
125 126 127 128
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

129
    return pten::make_ddim(output_shape);
130
  }
131 132 133 134

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
135 136 137 138
    return framework::OpKernelType(
        framework::TransToProtoVarType(
            ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
139 140 141 142 143 144 145 146 147 148 149
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
150 151 152 153 154 155
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
156 157 158 159 160 161 162 163 164 165 166
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
167 168
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
169
                              "(std::vector<int>). List of integers,"
170
                              " indicating the dimensions to be inserted")
171
        .SetDefault({})
172 173
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
174
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
175 176 177 178
                            platform::errors::InvalidArgument(
                                "Invalid "
                                "dimensions, dynamic dimensions should be "
                                "within [1, 6] dimensions (Eigen limit)."));
T
tianshuo78520a 已提交
179
          // Validity Check: the range of unsqueeze axis.
180
          for (int axis : axes) {
181
            PADDLE_ENFORCE_LT(axis, 6,
182 183 184 185
                              platform::errors::InvalidArgument(
                                  "Invalid "
                                  "dimensions, input axis should be"
                                  "within [1, 6] dimensions (Eigen limit)."));
186 187
          }
        });
188
    AddComment(R"DOC(
189 190
    Unsqueeze Operator.

191 192 193 194 195 196
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
197
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
198 199 200 201
    )DOC");
  }
};

202
class UnsqueezeGradOp : public framework::OperatorWithKernel {
203
 public:
204 205 206
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
207
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
208
    ctx->ShareLoD("X", framework::GradVarName("X"));
209
  }
210 211 212 213 214 215 216 217 218 219 220 221 222 223

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

224
  void Apply(GradOpPtr<T> grad_op) const override {
225 226 227 228 229 230
    grad_op->SetType("unsqueeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
231
};
232

233 234 235 236 237 238 239 240 241 242 243 244 245
template <typename T>
class UnsqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

246 247 248 249 250
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
251
class Unsqueeze2Op : public UnsqueezeOp {
252
 public:
253
  using UnsqueezeOp::UnsqueezeOp;
254
  void InferShape(framework::InferShapeContext *ctx) const override {
255
    UnsqueezeOp::InferShape(ctx);
256
    const auto &x_dims = ctx->GetInputDim("X");
257

258
    if (!ctx->HasOutput("XShape")) return;
259 260 261 262 263
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
264
    ctx->SetOutputDim("XShape", pten::make_ddim(xshape_dims));
265 266 267 268 269 270 271 272 273 274 275
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
276 277
        .AsIntermediate()
        .AsExtra();
278 279 280
  }
};

H
hong 已提交
281 282
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
283
 public:
H
hong 已提交
284
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
285

286
  void Apply(GradOpPtr<T> grad_op) const override {
287
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
288 289 290 291
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
292 293 294
  }
};

295
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
296
 public:
297 298
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
299 300 301
    PADDLE_ENFORCE_EQ(
        context->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
302
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
303 304
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
305
    auto xshape_dims = context->GetInputDim("XShape");
306
    auto x_dims = pten::slice_ddim(xshape_dims, 1, xshape_dims.size());
307 308 309 310
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

311 312 313
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
314 315 316
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
317 318
  }
};
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333
template <typename T>
class Unsqueeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

334 335 336 337
DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
338
DECLARE_NO_NEED_BUFFER_VARS_INFERER(UnsqueezeGradOpNoNeedBufferVarInferer, "X");
339 340 341 342
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
343 344 345 346
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
347 348
                  ops::UnsqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
349
                  ops::UnsqueezeGradOpNoNeedBufferVarInferer);
350 351

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
352 353 354
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeInplaceInferer);
355
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
356 357
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
358
                  ops::UnsqueezeGradInplaceInferer);
359 360 361 362

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
363
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
364
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
365
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
366
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
367 368 369 370
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex<float>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
371 372 373
                         paddle::platform::complex<double>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
374 375 376 377
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
378
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
379
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
380
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
381
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
382 383 384 385
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex<float>>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
386 387 388
                             paddle::platform::complex<double>>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::bfloat16>);
389
REGISTER_OP_CPU_KERNEL(
390 391
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
392
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
393
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
394
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
395
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
396 397 398 399
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex<float>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
400 401 402
                         paddle::platform::complex<double>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
403 404 405 406
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
407
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, bool>,
408
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
409
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
410
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
411 412 413 414
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::complex<float>>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext,
415 416 417
                              paddle::platform::complex<double>>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::bfloat16>);