unsqueeze_op.cc 15.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/unsqueeze_op.h"
16

17
#include <memory>
18 19
#include <string>
#include <vector>
20

21
#include "paddle/fluid/framework/op_registry.h"
22 23 24 25

namespace paddle {
namespace operators {

26
class UnsqueezeOp : public framework::OperatorWithKernel {
27
 public:
28 29 30 31
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
32 33 34
                      platform::errors::InvalidArgument(
                          "Input(X) of "
                          "Unsqueeze operator should not be null."));
35
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
36 37 38
                      platform::errors::InvalidArgument(
                          "Output(Out) of "
                          "Unsqueeze operator should not be null."));
39

40 41
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
42
    // Validity Check: input tensor dims (<6).
43
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
44 45 46 47
                      platform::errors::InvalidArgument(
                          "Invalid "
                          "dimensions, the rank of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)"));
48 49 50 51 52 53 54 55 56 57 58 59
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
60 61
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
62 63 64 65
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
66 67 68 69 70 71 72 73 74 75 76 77 78
      PADDLE_ENFORCE_EQ(axes_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "Input(AxesTensor)'s dimension of "
                            "Op(unsqueeze) must be 1. "
                            "But received AxesTensor's shape = [%s], "
                            "AxesTensor's dimension = %d.",
                            axes_dims, axes_dims.size()));
      PADDLE_ENFORCE_GE(
          axes_dims[0], 0,
          platform::errors::InvalidArgument(
              "Input(AxesTensor)'s shape must be known. But received "
              "AxesTensor's shape = [%s]",
              axes_dims));
79 80
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
81 82
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
83 84
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
85
    }
86 87
  }

88
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
89
                                        const framework::DDim &in_dims) {
90 91
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
92 93 94
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
95
    PADDLE_ENFORCE_LE(output_size, 6,
96 97
                      platform::errors::InvalidArgument(
                          "The output tensor's rank should be less than 6."));
98 99

    for (int axis : unsqz_dims) {
100
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
101
      // Vaildity Check: the axis bound
102 103 104 105 106 107 108
      PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
                                    "The insert dimension value should "
                                    "not be less than 0"));
      PADDLE_ENFORCE_LE(cur, cur_output_size,
                        platform::errors::InvalidArgument(
                            "The insert dimension value shoud not be larger "
                            "than the dimension size of input tensor"));
109 110 111 112 113 114 115 116 117
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
118
      // Add the output size.
119
      cur_output_size++;
120 121
    }

122
    // Make output shape
123 124
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
125 126 127 128 129 130
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
148 149 150 151 152 153
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
154 155 156 157 158 159 160 161 162 163 164
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
165 166
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
167
                              "(std::vector<int>). List of integers,"
168
                              " indicating the dimensions to be inserted")
169
        .SetDefault({})
170 171
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
172
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
173 174 175 176
                            platform::errors::InvalidArgument(
                                "Invalid "
                                "dimensions, dynamic dimensions should be "
                                "within [1, 6] dimensions (Eigen limit)."));
T
tianshuo78520a 已提交
177
          // Validity Check: the range of unsqueeze axis.
178
          for (int axis : axes) {
179
            PADDLE_ENFORCE_LT(axis, 6,
180 181 182 183
                              platform::errors::InvalidArgument(
                                  "Invalid "
                                  "dimensions, input axis should be"
                                  "within [1, 6] dimensions (Eigen limit)."));
184 185
          }
        });
186
    AddComment(R"DOC(
187 188
    Unsqueeze Operator.

189 190 191 192 193 194
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
195
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
196 197 198 199
    )DOC");
  }
};

200
class UnsqueezeGradOp : public framework::OperatorWithKernel {
201
 public:
202 203 204
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
205
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
206
    ctx->ShareLoD("X", framework::GradVarName("X"));
207
  }
208 209 210 211 212 213 214 215 216 217 218 219 220 221

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

222
  void Apply(GradOpPtr<T> grad_op) const override {
223 224 225 226 227 228
    grad_op->SetType("unsqueeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
229
};
230

231 232 233 234 235
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
236
class Unsqueeze2Op : public UnsqueezeOp {
237
 public:
238
  using UnsqueezeOp::UnsqueezeOp;
239
  void InferShape(framework::InferShapeContext *ctx) const override {
240
    UnsqueezeOp::InferShape(ctx);
241
    const auto &x_dims = ctx->GetInputDim("X");
242 243 244

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("XShape"), true,
245 246
        platform::errors::InvalidArgument("Output(XShape) of Unsqueeze "
                                          "operator should not be null."));
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
268 269
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
270
 public:
H
hong 已提交
271
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
272

273
  void Apply(GradOpPtr<T> grad_op) const override {
274
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
275 276 277 278
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
279 280 281
  }
};

282
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
283
 public:
284 285
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
286 287 288
    PADDLE_ENFORCE_EQ(
        context->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
289
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
290 291
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
292 293 294 295 296 297
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

298 299 300
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
301 302 303
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
304 305
  }
};
306 307 308 309 310

DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
311
DECLARE_NO_NEED_BUFFER_VARS_INFERER(UnsqueezeGradOpNoNeedBufferVarInferer, "X");
312 313 314 315
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
316 317 318 319
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
320
                  ops::UnsqueezeGradOpNoNeedBufferVarInferer);
321 322

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
323 324 325
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeInplaceInferer);
326
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
327
                  ops::UnsqueezeGradInplaceInferer);
328 329 330 331

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
332
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
333 334 335 336 337 338 339
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
340
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
341 342 343 344
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
345 346
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
347
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
348 349 350
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
351 352 353 354
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
355
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, bool>,
356 357 358
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);