GemmConvOp.cpp 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ConvOp.h"
16
#include "GemmFunctor.h"
17
#include "Im2Col.h"
18 19 20 21 22
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
23
 * \brief Forward calculation of convolution.
24 25 26 27 28 29 30 31
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
32
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
33 34 35 36 37 38
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

39
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
40 41
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
42
    check(inputs, outputs);
43 44 45 46 47 48 49 50 51 52 53 54
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
55

H
hedaoyuan 已提交
56 57 58 59 60 61 62 63 64
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
65 66 67 68

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
69
    bool needIm2col = isNeedIm2col(filter);
70

71 72 73
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

74
    TensorShape colShape;
75
    real* colData = NULL;
76

77
    if (needIm2col) {
78 79 80 81 82 83 84 85
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
86

87 88
    Im2ColFunctor<kCFO, Device, real> im2col;
    size_t inputOffset = imShape.getElements();
89 90
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
H
hedaoyuan 已提交
91 92
    size_t filterOffset = filter.getElements() / groups_;

93
    for (size_t i = 0; i < batchSize; i++) {
94
      for (size_t g = 0; g < groups_; g++) {
95
        if (needIm2col) {
96 97 98 99 100 101 102
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
103 104 105
                 paddingW(),
                 dilationH(),
                 dilationW());
106 107
        } else {
          colData = inputData + g * inputOffset;
108
        }
H
Bug fix  
hedaoyuan 已提交
109
        int M = outputChannels / groups_;
110
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
111
        int K = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
        BlasGemm<Device, real>::compute(false,
                                        false,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        filterData + g * filterOffset,
                                        K,
                                        colData,
                                        N,
                                        beta,
                                        outputData + g * outputOffset,
                                        N);
125
      }
H
hedaoyuan 已提交
126 127
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
128 129 130 131
    }
  }
};

H
hedaoyuan 已提交
132 133
#ifdef PADDLE_MOBILE_INFERENCE

H
hedaoyuan 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * \brief Forward calculation of convolution, optimized for mobile.
 */
template <DeviceType Device>
class GemmConvMobileFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
    bool needIm2col = isNeedIm2col(filter);

    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

    TensorShape colShape;
    real* colData = NULL;

    size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth;
    size_t colWidth = outputHeight * outputWidth;
    // Max col matrix height 256, Max col matrix width 1024
H
hedaoyuan 已提交
192 193
    size_t stepColHeight = std::min(colHeight, static_cast<size_t>(256));
    size_t stepColWidth = std::min(colWidth, static_cast<size_t>(2048));
H
hedaoyuan 已提交
194 195 196 197 198 199 200 201 202 203 204 205

    if (needIm2col) {
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});

      resizeBuffer<Device>(stepColHeight * stepColWidth * sizeof(real));
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }

H
hedaoyuan 已提交
206
    Im2ColMobileFunctor<real> im2col;
H
hedaoyuan 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    size_t inputOffset = imShape.getElements();
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    int nStride = colWidth;
    int kStride = colHeight;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        if (needIm2col) {
          real beta_ = beta;
          for (size_t colHeightStart = 0; colHeightStart < colHeight;
               colHeightStart += stepColHeight) {
            for (size_t colWidthStart = 0; colWidthStart < colWidth;
                 colWidthStart += stepColWidth) {
              int N = std::min(colWidth - colWidthStart, stepColWidth);
              int K = std::min(colHeight - colHeightStart, stepColHeight);
              // im2col
              im2col(inputData + g * inputOffset,
                     imShape,
                     colData,
                     colShape,
                     strideH(),
                     strideW(),
                     paddingH(),
                     paddingW(),
H
hedaoyuan 已提交
233 234
                     dilationH(),
                     dilationW(),
H
hedaoyuan 已提交
235 236 237 238 239 240 241
                     colHeightStart,
                     K,
                     colWidthStart,
                     N);

              // gemm
              int M = outputChannels / groups_;
H
hedaoyuan 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255
              BlasGemm<Device, real>::compute(
                  false,
                  false,
                  M,
                  N,
                  K,
                  1.0f,
                  filterData + g * filterOffset + colHeightStart,
                  kStride,
                  colData,
                  N,
                  beta_,
                  outputData + g * outputOffset + colWidthStart,
                  nStride);
H
hedaoyuan 已提交
256 257 258 259 260 261 262
            }
            beta_ = 1.0;
          }
        } else {
          int M = outputChannels / groups_;
          int N = outputHeight * outputWidth;
          int K = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275
          BlasGemm<Device, real>::compute(false,
                                          false,
                                          M,
                                          N,
                                          K,
                                          1.0f,
                                          filterData + g * filterOffset,
                                          K,
                                          inputData + g * inputOffset,
                                          N,
                                          beta,
                                          outputData + g * outputOffset,
                                          N);
H
hedaoyuan 已提交
276 277 278 279 280
        }
      }
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
    }
H
hedaoyuan 已提交
281 282

    memory_.reset();
H
hedaoyuan 已提交
283 284 285
  }
};

H
hedaoyuan 已提交
286 287
#endif

288 289 290 291 292 293 294 295 296 297
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
298
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
299 300 301 302 303 304
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

305 306 307
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
308
    check(inputs, outputs);
H
hedaoyuan 已提交
309 310 311
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
312
    const TensorShape& output = inputs[0].shape();
313
    const TensorShape& filter = inputs[1].shape();
314 315 316 317 318 319
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
320 321
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
322 323 324 325 326 327 328
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();
329
    bool needIm2col = isNeedIm2col(filter);
330

331 332 333
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

334
    TensorShape colShape;
335
    real* colData = NULL;
336

337
    if (needIm2col) {
338 339 340 341 342 343 344 345
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
346

347 348
    Col2ImFunctor<kCFO, Device, real> col2im;
    size_t inputOffset = imShape.getElements();
H
format  
hedaoyuan 已提交
349
    size_t outputOffset =
350 351 352 353 354 355 356 357
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        int K = outputChannels / groups_;
        int N = outputHeight * outputWidth;
        int M = inputChannels / groups_ * filterHeight * filterWidth;
358
        real scale = 0.0f;
359 360
        if (!needIm2col) {
          colData = inputGrad + g * inputOffset;
361 362
          scale = 1.0f;
        }
H
hedaoyuan 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375
        BlasGemm<Device, real>::compute(true,
                                        false,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        filterData + g * filterOffset,
                                        M,
                                        outputGrad + g * outputOffset,
                                        N,
                                        scale,
                                        colData,
                                        N);
376
        if (needIm2col) {
377 378
          col2im(inputGrad + g * inputOffset,
                 imShape,
379
                 colData,
380 381 382 383
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
384 385 386
                 paddingW(),
                 dilationH(),
                 dilationW());
387
        }
388 389 390 391
      }
      inputGrad += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
    }
392 393 394 395 396 397 398 399 400 401 402 403 404
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
405
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
406 407 408 409 410 411
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

412 413 414
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
415
    check(inputs, outputs);
416
    const TensorShape& output = inputs[0].shape();
417
    const TensorShape& input = inputs[1].shape();
418 419
    const TensorShape& filter = outputs[0].shape();

420 421 422 423 424 425 426
    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

427 428 429 430
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
431 432
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
433 434 435 436 437 438 439
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();
440
    bool needIm2col = isNeedIm2col(filter);
441

442 443 444
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

445
    TensorShape colShape;
446
    real* colData = NULL;
447

448
    if (needIm2col) {
449 450 451 452 453 454 455 456
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
457

458 459
    Im2ColFunctor<kCFO, Device, real> im2col;
    size_t inputOffset = imShape.getElements();
460 461 462 463 464
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
465
        if (needIm2col) {
466 467 468 469 470 471 472
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
473 474 475
                 paddingW(),
                 dilationH(),
                 dilationW());
476 477
        } else {
          colData = inputData + g * inputOffset;
478
        }
479 480 481
        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494
        BlasGemm<Device, real>::compute(false,
                                        true,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        outputGrad + g * outputOffset,
                                        K,
                                        colData,
                                        K,
                                        i == 0 ? beta : 1.0f,
                                        filterGrad + g * filterOffset,
                                        N);
495
      }
496 497
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
498
    }
499 500 501
  }
};

H
hedaoyuan 已提交
502 503 504
#ifdef PADDLE_MOBILE_INFERENCE
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction);
#else
505
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
H
hedaoyuan 已提交
506
#endif
507 508
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
509
#ifdef PADDLE_WITH_CUDA
510
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
511 512
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
513
#endif
514 515

}  // namespace paddle