GemmConvOp.cpp 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ConvOp.h"
16
#include "GemmFunctor.h"
17
#include "Im2Col.h"
18 19 20 21 22
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
23
 * \brief Forward calculation of convolution.
24 25 26 27 28 29 30 31
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
32
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
33 34 35 36 37 38
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

39
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
40 41
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
42
    check(inputs, outputs);
43 44 45 46 47 48 49 50 51 52 53 54
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
55

H
hedaoyuan 已提交
56 57 58 59 60 61 62 63 64
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
65 66 67 68

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
69 70 71 72 73 74 75 76 77
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});
    TensorShape colShape = TensorShape({inputChannels / groups_,
                                        filterHeight,
                                        filterWidth,
                                        outputHeight,
                                        outputWidth});

    resizeBuffer<Device>(colShape.getElements());
78 79
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

80
    Im2ColFunctor<kCFO, Device, real> im2col;
81
    GemmFunctor<Device, real> gemm;
82
    size_t inputOffset = imShape.getElements();
83 84
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
H
hedaoyuan 已提交
85 86
    size_t filterOffset = filter.getElements() / groups_;

87
    for (size_t i = 0; i < batchSize; i++) {
88
      for (size_t g = 0; g < groups_; g++) {
89
        im2col(inputData + g * inputOffset,
90 91 92
               imShape,
               colData,
               colShape,
93 94 95
               strideH(),
               strideW(),
               paddingH(),
96
               paddingW());
97

H
Bug fix  
hedaoyuan 已提交
98
        int M = outputChannels / groups_;
99
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
100
        int K = inputChannels / groups_ * filterHeight * filterWidth;
101 102 103
        gemm(CblasNoTrans,
             CblasNoTrans,
             M,
104 105 106 107 108 109 110
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             K,
             colData,
             N,
111
             beta,
112 113
             outputData + g * outputOffset,
             N);
114
      }
H
hedaoyuan 已提交
115 116
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
117 118 119 120
    }
  }
};

121 122 123 124 125 126 127 128 129 130
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
131
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
132 133 134 135 136 137
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

138 139 140
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
141
    check(inputs, outputs);
H
hedaoyuan 已提交
142 143 144
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
145
    const TensorShape& output = inputs[0].shape();
146
    const TensorShape& filter = inputs[1].shape();
147 148 149 150 151 152
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
153 154
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
155 156 157 158 159 160 161
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();
162 163 164 165 166 167 168 169 170
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});
    TensorShape colShape = TensorShape({inputChannels / groups_,
                                        filterHeight,
                                        filterWidth,
                                        outputHeight,
                                        outputWidth});

    resizeBuffer<Device>(colShape.getElements());
171 172
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

173
    Col2ImFunctor<kCFO, Device, real> col2im;
174
    GemmFunctor<Device, real> gemm;
175
    size_t inputOffset = imShape.getElements();
H
format  
hedaoyuan 已提交
176
    size_t outputOffset =
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        int K = outputChannels / groups_;
        int N = outputHeight * outputWidth;
        int M = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasTrans,
             CblasNoTrans,
             M,
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             M,
             outputGrad + g * outputOffset,
             N,
             0.0f,
             colData,
             N);
198 199 200 201
        col2im(inputGrad + g * inputOffset,
               imShape,
               colData,
               colShape,
202 203 204
               strideH(),
               strideW(),
               paddingH(),
205
               paddingW());
206 207 208 209
      }
      inputGrad += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
    }
210 211 212 213 214 215 216 217 218 219 220 221 222
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
223
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
224 225 226 227 228 229
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

230 231 232
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
233
    check(inputs, outputs);
234
    const TensorShape& output = inputs[0].shape();
235
    const TensorShape& input = inputs[1].shape();
236 237
    const TensorShape& filter = outputs[0].shape();

238 239 240 241 242 243 244
    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

245 246 247 248
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
249 250
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
251 252 253 254 255 256 257
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();
258 259 260 261 262 263 264 265 266
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});
    TensorShape colShape = TensorShape({inputChannels / groups_,
                                        filterHeight,
                                        filterWidth,
                                        outputHeight,
                                        outputWidth});

    resizeBuffer<Device>(colShape.getElements());
267 268
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

269
    Im2ColFunctor<kCFO, Device, real> im2col;
270
    GemmFunctor<Device, real> gemm;
271
    size_t inputOffset = imShape.getElements();
272 273 274 275 276 277
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        im2col(inputData + g * inputOffset,
278 279 280
               imShape,
               colData,
               colShape,
281 282 283
               strideH(),
               strideW(),
               paddingH(),
284
               paddingW());
285 286 287 288 289 290 291 292 293 294 295 296 297 298

        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasNoTrans,
             CblasTrans,
             M,
             N,
             K,
             1.0f,
             outputGrad + g * outputOffset,
             K,
             colData,
             K,
299
             i == 0 ? beta : 1.0f,
300 301 302
             filterGrad + g * filterOffset,
             N);
      }
303 304
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
305
    }
306 307 308
  }
};

309
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
310 311
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
312
#ifndef PADDLE_ONLY_CPU
313
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
314 315
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
316
#endif
317 318

}  // namespace paddle