Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
784e2184
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
784e2184
编写于
6月 07, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the error of group convolution.
上级
7aac38c7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
67 addition
and
28 deletion
+67
-28
paddle/function/ConvOp.h
paddle/function/ConvOp.h
+40
-8
paddle/function/ConvOpTest.cpp
paddle/function/ConvOpTest.cpp
+1
-1
paddle/function/GemmConvOp.cpp
paddle/function/GemmConvOp.cpp
+18
-15
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+8
-4
未找到文件。
paddle/function/ConvOp.h
浏览文件 @
784e2184
...
@@ -46,8 +46,13 @@ namespace paddle {
...
@@ -46,8 +46,13 @@ namespace paddle {
* are all NCHW format. Where N is batch size, C is the number of channels,
* are all NCHW format. Where N is batch size, C is the number of channels,
* H and W is the height and width of image or image gradient.
* H and W is the height and width of image or image gradient.
*
*
* 2. The format of the filter data is MCHW, where M is the number of
* 2. The format of the filter data is MCHW, where M is the number of output
* output image channels, C is the number of input image channels,
* image channels, C is the number of input image channels,
* H and W is height and width of filter.
*
* If groups is greater than 1, the filter's data format should be GMCHW,
* where G is the groups, and G * M is the number of output image channels,
* G * C is the number of input image channels,
* H and W is height and width of filter.
* H and W is height and width of filter.
*/
*/
class
ConvFunctionBase
:
public
FunctionBase
{
class
ConvFunctionBase
:
public
FunctionBase
{
...
@@ -73,20 +78,47 @@ public:
...
@@ -73,20 +78,47 @@ public:
const
TensorShape
&
output
)
{
const
TensorShape
&
output
)
{
// inputs and outputs arguments should be 4-dimensional.
// inputs and outputs arguments should be 4-dimensional.
CHECK_EQ
(
input
.
ndims
(),
(
size_t
)
4
);
CHECK_EQ
(
input
.
ndims
(),
(
size_t
)
4
);
CHECK_EQ
(
filter
.
ndims
(),
(
size_t
)
4
);
CHECK_EQ
(
output
.
ndims
(),
(
size_t
)
4
);
CHECK_EQ
(
output
.
ndims
(),
(
size_t
)
4
);
// The batchSize of the input needs to be equal to
// The batchSize of the input needs to be equal to
// the batchSize of the output.
// the batchSize of the output.
CHECK_EQ
(
input
[
0
],
output
[
0
]);
CHECK_EQ
(
input
[
0
],
output
[
0
]);
// The input and output channel dimensions are the second and first
if
(
filter
.
ndims
()
==
(
size_t
)
4
)
{
// dimensions of the filter shape.
// If the filter's dimension is 4, groups convolution is not supported.
CHECK_EQ
(
input
[
1
]
/
groups_
,
filter
[
1
]);
CHECK_EQ
(
groups_
,
(
size_t
)
1
);
CHECK_EQ
(
output
[
1
],
filter
[
0
]);
// The input and output channel dimensions are the second and first
// dimensions of the filter shape.
CHECK_EQ
(
input
[
1
],
filter
[
1
]);
CHECK_EQ
(
output
[
1
],
filter
[
0
]);
}
else
{
// filter argument should be 5-dimensional.
CHECK_EQ
(
filter
.
ndims
(),
(
size_t
)
5
);
// The first dimension of the filter is the size of the group
CHECK_EQ
(
filter
[
0
],
groups_
);
// The input and output channel dimensions are the third and second
// dimensions of the filter shape.
CHECK_EQ
(
input
[
1
],
filter
[
2
]
*
groups_
);
CHECK_EQ
(
output
[
1
],
filter
[
1
]
*
groups_
);
}
}
}
protected:
protected:
size_t
getFilterHeight
(
const
TensorShape
&
filter
)
const
{
if
(
filter
.
ndims
()
==
5
)
{
return
filter
[
3
];
}
else
{
return
filter
[
2
];
}
}
size_t
getFilterWidth
(
const
TensorShape
&
filter
)
const
{
if
(
filter
.
ndims
()
==
5
)
{
return
filter
[
4
];
}
else
{
return
filter
[
3
];
}
}
std
::
vector
<
size_t
>
strides_
;
std
::
vector
<
size_t
>
strides_
;
std
::
vector
<
size_t
>
paddings_
;
std
::
vector
<
size_t
>
paddings_
;
...
...
paddle/function/ConvOpTest.cpp
浏览文件 @
784e2184
...
@@ -80,7 +80,7 @@ public:
...
@@ -80,7 +80,7 @@ public:
}
else
if
(
type
==
BACKWARD_INPUT_TEST
)
{
}
else
if
(
type
==
BACKWARD_INPUT_TEST
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
)
,
ADD_TO
);
test
.
run
();
test
.
run
();
}
else
if
(
type
==
BACKWARD_FILTER_TEST
)
{
}
else
if
(
type
==
BACKWARD_FILTER_TEST
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
...
...
paddle/function/GemmConvOp.cpp
浏览文件 @
784e2184
...
@@ -134,15 +134,15 @@ public:
...
@@ -134,15 +134,15 @@ public:
beta
=
0.0
;
beta
=
0.0
;
}
}
size_t
batchSize
=
input
s
[
0
].
shape
()
[
0
];
size_t
batchSize
=
input
[
0
];
size_t
inputChannels
=
input
s
[
0
].
shape
()
[
1
];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
s
[
0
].
shape
()
[
2
];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
s
[
0
].
shape
()
[
3
];
size_t
inputWidth
=
input
[
3
];
size_t
filterHeight
=
inputs
[
1
].
shape
()[
2
]
;
size_t
filterHeight
=
getFilterHeight
(
filter
)
;
size_t
filterWidth
=
inputs
[
1
].
shape
()[
3
]
;
size_t
filterWidth
=
getFilterWidth
(
filter
)
;
size_t
outputChannels
=
output
s
[
0
].
shape
()
[
1
];
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
s
[
0
].
shape
()
[
2
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
s
[
0
].
shape
()
[
3
];
size_t
outputWidth
=
output
[
3
];
real
*
inputData
=
inputs
[
0
].
data
<
real
>
();
real
*
inputData
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
...
@@ -158,7 +158,8 @@ public:
...
@@ -158,7 +158,8 @@ public:
size_t
inputOffset
=
(
inputChannels
/
groups_
)
*
inputHeight
*
inputWidth
;
size_t
inputOffset
=
(
inputChannels
/
groups_
)
*
inputHeight
*
inputWidth
;
size_t
outputOffset
=
size_t
outputOffset
=
(
outputChannels
/
groups_
)
*
outputHeight
*
outputWidth
;
(
outputChannels
/
groups_
)
*
outputHeight
*
outputWidth
;
size_t
filterOffset
=
inputs
[
1
].
shape
().
getElements
()
/
groups_
;
size_t
filterOffset
=
filter
.
getElements
()
/
groups_
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
im2col
(
inputData
+
g
*
inputOffset
,
im2col
(
inputData
+
g
*
inputOffset
,
...
@@ -211,7 +212,9 @@ public:
...
@@ -211,7 +212,9 @@ public:
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
// CHECK_EQ(outputs[0].getArgType(), ADD_TO);
// Since the implementation of Col2ImFunctor is ADD_TO,
// this function only supports ADD_TO mode.
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
input
=
outputs
[
0
].
shape
();
const
TensorShape
&
input
=
outputs
[
0
].
shape
();
...
@@ -221,8 +224,8 @@ public:
...
@@ -221,8 +224,8 @@ public:
size_t
inputChannels
=
input
[
1
];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
[
2
];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
[
3
];
size_t
inputWidth
=
input
[
3
];
size_t
filterHeight
=
filter
[
2
]
;
size_t
filterHeight
=
getFilterHeight
(
filter
)
;
size_t
filterWidth
=
filter
[
3
]
;
size_t
filterWidth
=
getFilterWidth
(
filter
)
;
size_t
outputChannels
=
output
[
1
];
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
[
2
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
[
3
];
size_t
outputWidth
=
output
[
3
];
...
@@ -311,8 +314,8 @@ public:
...
@@ -311,8 +314,8 @@ public:
size_t
inputChannels
=
input
[
1
];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
[
2
];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
[
3
];
size_t
inputWidth
=
input
[
3
];
size_t
filterHeight
=
filter
[
2
]
;
size_t
filterHeight
=
getFilterHeight
(
filter
)
;
size_t
filterWidth
=
filter
[
3
]
;
size_t
filterWidth
=
getFilterWidth
(
filter
)
;
size_t
outputChannels
=
output
[
1
];
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
[
2
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
[
3
];
size_t
outputWidth
=
output
[
3
];
...
...
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
784e2184
...
@@ -80,8 +80,11 @@ void ExpandConvLayer::forward(PassType passType) {
...
@@ -80,8 +80,11 @@ void ExpandConvLayer::forward(PassType passType) {
(
size_t
)
imgSizeH_
[
i
],
(
size_t
)
imgSizeH_
[
i
],
(
size_t
)
imgSizeW_
[
i
]});
(
size_t
)
imgSizeW_
[
i
]});
filterShape_
[
i
]
=
filterShape_
[
i
]
=
TensorShape
({
!
isDeconv_
?
(
size_t
)
numFilters_
:
(
size_t
)
channels_
[
i
],
TensorShape
({(
size_t
)
groups_
[
i
],
!
isDeconv_
?
(
size_t
)
channels_
[
i
]
:
(
size_t
)
numFilters_
,
!
isDeconv_
?
(
size_t
)
numFilters_
/
groups_
[
i
]
:
(
size_t
)
channels_
[
i
]
/
groups_
[
i
],
!
isDeconv_
?
(
size_t
)
channels_
[
i
]
/
groups_
[
i
]
:
(
size_t
)
numFilters_
/
groups_
[
i
],
(
size_t
)
filterSizeY_
[
i
],
(
size_t
)
filterSizeY_
[
i
],
(
size_t
)
filterSize_
[
i
]});
(
size_t
)
filterSize_
[
i
]});
outputShape_
[
i
]
=
TensorShape
({(
size_t
)
batchSize
,
outputShape_
[
i
]
=
TensorShape
({(
size_t
)
batchSize
,
...
@@ -96,8 +99,9 @@ void ExpandConvLayer::forward(PassType passType) {
...
@@ -96,8 +99,9 @@ void ExpandConvLayer::forward(PassType passType) {
BufferArgs
outputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
getInputValue
(
i
),
inputShape_
[
i
]);
inputs
.
addArg
(
*
getInputValue
(
i
),
inputShape_
[
i
]);
inputs
.
addArg
(
*
weights_
[
i
]
->
getW
(),
filterShape_
[
i
]);
inputs
.
addArg
(
*
weights_
[
i
]
->
getW
(),
filterShape_
[
i
]);
outputs
.
addArg
(
outputs
.
addArg
(
*
getOutputValue
(),
*
getOutputValue
(),
outputShape_
[
i
],
i
==
0
?
ASSIGN_TO
:
ADD_TO
);
outputShape_
[
i
],
!
isDeconv_
&&
i
==
0
?
ASSIGN_TO
:
ADD_TO
);
forward_
[
i
]
->
calc
(
inputs
,
outputs
);
forward_
[
i
]
->
calc
(
inputs
,
outputs
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录