mul_op_npu.cc 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

18
#include "paddle/fluid/framework/op_registry.h"
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MulNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
27 28 29
    auto* x = ctx.Input<phi::DenseTensor>("X");
    auto* y = ctx.Input<phi::DenseTensor>("Y");
    auto* out = ctx.Output<phi::DenseTensor>("Out");
30 31 32 33 34 35 36 37
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        out->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
38
        const auto& runner =
39 40 41
            NpuOpRunner("MatMul",
                        {*x, *y},
                        {*out},
42 43 44
                        {{"transpose_x1", false}, {"transpose_x2", false}});

        runner.Run(stream);
45
      } else if (x->dims().size() >= 3 && y->dims().size() == 2) {
46 47
        // reshape
        Tensor tmp_x(x->type());
48 49 50 51
        int64_t sec_dim = x->dims()[1];
        for (auto i = 2; i < x->dims().size(); i++) {
          sec_dim *= x->dims()[i];
        }
52
        int64_t first_dim = x->dims()[0];
53
        tmp_x.ShareDataWith(*x);
54
        tmp_x.Resize(phi::make_ddim({first_dim, sec_dim}));
55 56
        out->mutable_data<T>(ctx.GetPlace());
        // matmul
L
Leo Chen 已提交
57
        const auto& runner =
58 59 60
            NpuOpRunner("MatMul",
                        {tmp_x, *y},
                        {*out},
61 62 63 64
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner.Run(stream);
      } else {
        PADDLE_THROW(
65
            platform::errors::InvalidArgument("npu error: not support dims"));
66 67 68 69
      }
      // to do other
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
70 71
      PADDLE_ENFORCE_EQ(x_num_col_dims,
                        2,
72 73 74
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
75 76 77 78
      if (framework::TransToProtoVarType(x->dtype()) ==
              framework::proto::VarType::FP16 &&
          framework::TransToProtoVarType(y->dtype()) ==
              framework::proto::VarType::FP16) {
79 80 81 82
        // NOTE: When the dim of the input and output shapes is inconsistent,
        // (Boradcast) BatchMatMul NPU OP only support FP16.
        out->mutable_data<T>(ctx.GetPlace());
        const auto& runner =
83 84 85
            NpuOpRunner("BatchMatMul",
                        {*x, *y},
                        {*out},
86 87 88 89 90 91 92 93 94 95 96 97
                        {{"adj_x1", false}, {"adj_x2", false}});

        auto stream =
            ctx.template device_context<paddle::platform::NPUDeviceContext>()
                .stream();
        runner.Run(stream);
      } else {
        // flatten => x.shape=[6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
        tmp_x.ShareDataWith(*x);
98
        tmp_x.Resize(phi::make_ddim({first_dim, sec_dim}));
99 100 101 102 103 104

        // matmul [6,4] , [4, 5] => [6, 5]
        out->mutable_data<T>(ctx.GetPlace());

        Tensor tmp_out(x->type());
        tmp_out.ShareDataWith(*out);
105
        tmp_out.Resize(phi::make_ddim({first_dim, y->dims()[1]}));
106 107

        const auto& runner_matmul =
108 109 110
            NpuOpRunner("MatMul",
                        {tmp_x, *y},
                        {tmp_out},
111 112 113
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner_matmul.Run(stream);
      }
114 115 116 117 118 119 120 121
    }
  }
};

template <typename DeviceContext, typename T>
class MulGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
122 123 124 125 126
    auto* x = ctx.Input<phi::DenseTensor>("X");
    auto* y = ctx.Input<phi::DenseTensor>("Y");
    auto* dout = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<phi::DenseTensor>(framework::GradVarName("Y"));
127 128 129 130 131 132 133 134 135
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
136
          const auto& runner_dx =
137 138 139
              NpuOpRunner("MatMul",
                          {*dout, *y},
                          {*dx},
140 141 142 143 144 145 146
                          {{"transpose_x1", false}, {"transpose_x2", true}});

          runner_dx.Run(stream);
        }

        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
147
          const auto& runner_dy =
148 149 150
              NpuOpRunner("MatMul",
                          {*x, *dout},
                          {*dy},
151 152 153 154
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
155
      } else if (x->dims().size() >= 3 && y->dims().size() == 2) {
156 157 158 159 160
        // flatten => x.shape=[6, 4]
        // matmul
        if (dx) {
          // matmul [2, 5] * [12, 5] => [2, 12]
          dx->mutable_data<T>(ctx.GetPlace());
161 162
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
163
          tmp_dx.Resize(phi::make_ddim({dout->dims()[0], y->dims()[0]}));
164

L
Leo Chen 已提交
165
          const auto& runner_matmul =
166 167 168
              NpuOpRunner("MatMul",
                          {*dout, *y},
                          {tmp_dx},
169 170 171 172 173 174 175
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }

        if (dy) {
          // flatten
          Tensor tmp_x(x->type());
176 177 178 179
          int64_t sec_dim = x->dims()[1];
          for (auto i = 2; i < x->dims().size(); i++) {
            sec_dim *= x->dims()[i];
          }
180
          int64_t first_dim = x->dims()[0];
181
          tmp_x.ShareDataWith(*x);
182
          tmp_x.Resize(phi::make_ddim({first_dim, sec_dim}));
183
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
184
          const auto& runner_dy =
185 186 187
              NpuOpRunner("MatMul",
                          {tmp_x, *dout},
                          {*dy},
188 189 190 191 192 193 194
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      }
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
195 196
      PADDLE_ENFORCE_EQ(x_num_col_dims,
                        2,
197 198 199 200 201 202 203
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
      // tmp_dout both used by dx and dy
      Tensor tmp_dout(x->type());
      int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1];
      int64_t dout_sec_dim = dout->dims()[2];
204
      tmp_dout.ShareDataWith(*dout);
205
      tmp_dout.Resize(phi::make_ddim({dout_first_dim, dout_sec_dim}));
206 207

      if (dx) {
208
        // tmp_dout * y [2, 3, 5] * [4,5] => [2, 3, 4]
209 210 211 212
        if (framework::TransToProtoVarType(dout->dtype()) ==
                framework::proto::VarType::FP16 &&
            framework::TransToProtoVarType(y->dtype()) ==
                framework::proto::VarType::FP16) {
213 214 215 216
          // NOTE: When the dim of the input and output shapes is inconsistent,
          // (Boradcast) BatchMatMul NPU OP only support FP16.
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner =
217 218 219
              NpuOpRunner("BatchMatMul",
                          {*dout, *y},
                          {*dx},
220 221 222 223 224 225 226 227 228 229
                          {{"adj_x1", false}, {"adj_x2", true}});

          auto stream =
              ctx.template device_context<paddle::platform::NPUDeviceContext>()
                  .stream();
          runner.Run(stream);
        } else {
          dx->mutable_data<T>(ctx.GetPlace());
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
230
          tmp_dx.Resize(phi::make_ddim({dout_first_dim, y->dims()[0]}));
231 232

          const auto& runner_matmul =
233 234 235
              NpuOpRunner("MatMul",
                          {tmp_dout, *y},
                          {tmp_dx},
236 237 238
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }
239 240 241 242 243 244
      }
      if (dy) {
        // flatten x.shape [2,3,4] => [6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
245
        tmp_x.ShareDataWith(*x);
246
        tmp_x.Resize(phi::make_ddim({first_dim, sec_dim}));
247 248
        // mamtul [6,4] [6,5] =>[4,5]
        dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
249
        const auto& runner_dy =
250 251 252
            NpuOpRunner("MatMul",
                        {tmp_x, tmp_dout},
                        {*dy},
253 254 255 256 257 258 259 260 261 262 263 264 265
                        {{"transpose_x1", true}, {"transpose_x2", false}});
        runner_dy.Run(stream);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
266 267
    mul,
    ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>,
268 269 270
    ops::MulNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
271 272
    mul_grad,
    ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
273 274
    ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);