mul_op_npu.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/mul_op.h"
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MulNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* out = ctx.Output<framework::Tensor>("Out");
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        out->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
39
        const auto& runner =
40 41 42 43
            NpuOpRunner("MatMul", {*x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});

        runner.Run(stream);
44
      } else if (x->dims().size() >= 3 && y->dims().size() == 2) {
45 46
        // reshape
        Tensor tmp_x(x->type());
47 48 49 50
        int64_t sec_dim = x->dims()[1];
        for (auto i = 2; i < x->dims().size(); i++) {
          sec_dim *= x->dims()[i];
        }
51
        int64_t first_dim = x->dims()[0];
52
        tmp_x.ShareDataWith(*x);
53
        tmp_x.Resize(pten::make_ddim({first_dim, sec_dim}));
54 55
        out->mutable_data<T>(ctx.GetPlace());
        // matmul
L
Leo Chen 已提交
56
        const auto& runner =
57 58 59 60 61
            NpuOpRunner("MatMul", {tmp_x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner.Run(stream);
      } else {
        PADDLE_THROW(
62
            platform::errors::InvalidArgument("npu error: not support dims"));
63 64 65 66 67 68 69 70
      }
      // to do other
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
71 72 73 74
      if (framework::TransToProtoVarType(x->dtype()) ==
              framework::proto::VarType::FP16 &&
          framework::TransToProtoVarType(y->dtype()) ==
              framework::proto::VarType::FP16) {
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        // NOTE: When the dim of the input and output shapes is inconsistent,
        // (Boradcast) BatchMatMul NPU OP only support FP16.
        out->mutable_data<T>(ctx.GetPlace());
        const auto& runner =
            NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
                        {{"adj_x1", false}, {"adj_x2", false}});

        auto stream =
            ctx.template device_context<paddle::platform::NPUDeviceContext>()
                .stream();
        runner.Run(stream);
      } else {
        // flatten => x.shape=[6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
        tmp_x.ShareDataWith(*x);
92
        tmp_x.Resize(pten::make_ddim({first_dim, sec_dim}));
93 94 95 96 97 98

        // matmul [6,4] , [4, 5] => [6, 5]
        out->mutable_data<T>(ctx.GetPlace());

        Tensor tmp_out(x->type());
        tmp_out.ShareDataWith(*out);
99
        tmp_out.Resize(pten::make_ddim({first_dim, y->dims()[1]}));
100 101 102 103 104 105

        const auto& runner_matmul =
            NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner_matmul.Run(stream);
      }
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    }
  }
};

template <typename DeviceContext, typename T>
class MulGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
128
          const auto& runner_dx =
129 130 131 132 133 134 135 136
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});

          runner_dx.Run(stream);
        }

        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
137
          const auto& runner_dy =
138 139 140 141 142
              NpuOpRunner("MatMul", {*x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
143
      } else if (x->dims().size() >= 3 && y->dims().size() == 2) {
144 145 146 147 148
        // flatten => x.shape=[6, 4]
        // matmul
        if (dx) {
          // matmul [2, 5] * [12, 5] => [2, 12]
          dx->mutable_data<T>(ctx.GetPlace());
149 150
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
151
          tmp_dx.Resize(pten::make_ddim({dout->dims()[0], y->dims()[0]}));
152

L
Leo Chen 已提交
153
          const auto& runner_matmul =
154
              NpuOpRunner("MatMul", {*dout, *y}, {tmp_dx},
155 156 157 158 159 160 161
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }

        if (dy) {
          // flatten
          Tensor tmp_x(x->type());
162 163 164 165
          int64_t sec_dim = x->dims()[1];
          for (auto i = 2; i < x->dims().size(); i++) {
            sec_dim *= x->dims()[i];
          }
166
          int64_t first_dim = x->dims()[0];
167
          tmp_x.ShareDataWith(*x);
168
          tmp_x.Resize(pten::make_ddim({first_dim, sec_dim}));
169
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
170
          const auto& runner_dy =
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
              NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      }
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
      // tmp_dout both used by dx and dy
      Tensor tmp_dout(x->type());
      int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1];
      int64_t dout_sec_dim = dout->dims()[2];
187
      tmp_dout.ShareDataWith(*dout);
188
      tmp_dout.Resize(pten::make_ddim({dout_first_dim, dout_sec_dim}));
189 190

      if (dx) {
191
        // tmp_dout * y [2, 3, 5] * [4,5] => [2, 3, 4]
192 193 194 195
        if (framework::TransToProtoVarType(dout->dtype()) ==
                framework::proto::VarType::FP16 &&
            framework::TransToProtoVarType(y->dtype()) ==
                framework::proto::VarType::FP16) {
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
          // NOTE: When the dim of the input and output shapes is inconsistent,
          // (Boradcast) BatchMatMul NPU OP only support FP16.
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner =
              NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
                          {{"adj_x1", false}, {"adj_x2", true}});

          auto stream =
              ctx.template device_context<paddle::platform::NPUDeviceContext>()
                  .stream();
          runner.Run(stream);
        } else {
          dx->mutable_data<T>(ctx.GetPlace());
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
211
          tmp_dx.Resize(pten::make_ddim({dout_first_dim, y->dims()[0]}));
212 213 214 215 216 217

          const auto& runner_matmul =
              NpuOpRunner("MatMul", {tmp_dout, *y}, {tmp_dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }
218 219 220 221 222 223
      }
      if (dy) {
        // flatten x.shape [2,3,4] => [6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
224
        tmp_x.ShareDataWith(*x);
225
        tmp_x.Resize(pten::make_ddim({first_dim, sec_dim}));
226 227
        // mamtul [6,4] [6,5] =>[4,5]
        dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
228
        const auto& runner_dy =
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy},
                        {{"transpose_x1", true}, {"transpose_x2", false}});
        runner_dy.Run(stream);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
    mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);