mul_op_npu.cc 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MulNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* out = ctx.Output<framework::Tensor>("Out");
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        out->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
39
        const auto& runner =
40 41 42 43 44 45 46 47 48
            NpuOpRunner("MatMul", {*x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});

        runner.Run(stream);
      } else if (x->dims().size() == 3 && y->dims().size() == 2) {
        // reshape
        Tensor tmp_x(x->type());
        int64_t sec_dim = x->dims()[1] * x->dims()[2];
        int64_t first_dim = x->dims()[0];
49
        tmp_x.ShareDataWith(*x);
50 51 52
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        out->mutable_data<T>(ctx.GetPlace());
        // matmul
L
Leo Chen 已提交
53
        const auto& runner =
54 55 56 57 58 59 60 61 62 63 64 65 66 67
            NpuOpRunner("MatMul", {tmp_x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner.Run(stream);
      } else {
        PADDLE_THROW(
            platform::errors::InvalidArgument("npu error: not suppert dims"));
      }
      // to do other
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
      if (x->type() == framework::proto::VarType::FP16 &&
          y->type() == framework::proto::VarType::FP16) {
        // NOTE: When the dim of the input and output shapes is inconsistent,
        // (Boradcast) BatchMatMul NPU OP only support FP16.
        out->mutable_data<T>(ctx.GetPlace());
        const auto& runner =
            NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
                        {{"adj_x1", false}, {"adj_x2", false}});

        auto stream =
            ctx.template device_context<paddle::platform::NPUDeviceContext>()
                .stream();
        runner.Run(stream);
      } else {
        // flatten => x.shape=[6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
        tmp_x.ShareDataWith(*x);
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));

        // matmul [6,4] , [4, 5] => [6, 5]
        out->mutable_data<T>(ctx.GetPlace());

        Tensor tmp_out(x->type());
        tmp_out.ShareDataWith(*out);
        tmp_out.Resize(framework::make_ddim({first_dim, y->dims()[1]}));

        const auto& runner_matmul =
            NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner_matmul.Run(stream);
      }
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    }
  }
};

template <typename DeviceContext, typename T>
class MulGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
123
          const auto& runner_dx =
124 125 126 127 128 129 130 131
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});

          runner_dx.Run(stream);
        }

        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
132
          const auto& runner_dy =
133 134 135 136 137 138 139 140 141 142 143
              NpuOpRunner("MatMul", {*x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      } else if (x->dims().size() == 3 && y->dims().size() == 2) {
        // flatten => x.shape=[6, 4]
        // matmul
        if (dx) {
          // matmul [2, 5] * [12, 5] => [2, 12]
          dx->mutable_data<T>(ctx.GetPlace());
144 145 146 147
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
          tmp_dx.Resize(framework::make_ddim({dout->dims()[0], y->dims()[0]}));

L
Leo Chen 已提交
148
          const auto& runner_matmul =
149
              NpuOpRunner("MatMul", {*dout, *y}, {tmp_dx},
150 151 152 153 154 155 156 157 158
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }

        if (dy) {
          // flatten
          Tensor tmp_x(x->type());
          int64_t sec_dim = x->dims()[1] * x->dims()[2];
          int64_t first_dim = x->dims()[0];
159
          tmp_x.ShareDataWith(*x);
160 161
          tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
162
          const auto& runner_dy =
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
              NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      }
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
      // tmp_dout both used by dx and dy
      Tensor tmp_dout(x->type());
      int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1];
      int64_t dout_sec_dim = dout->dims()[2];
179
      tmp_dout.ShareDataWith(*dout);
180 181 182
      tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim}));

      if (dx) {
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        // tmp_dout * y [2, 3, 5] * [4,5] => [2, 3, 4]
        if (dout->type() == framework::proto::VarType::FP16 &&
            y->type() == framework::proto::VarType::FP16) {
          // NOTE: When the dim of the input and output shapes is inconsistent,
          // (Boradcast) BatchMatMul NPU OP only support FP16.
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner =
              NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
                          {{"adj_x1", false}, {"adj_x2", true}});

          auto stream =
              ctx.template device_context<paddle::platform::NPUDeviceContext>()
                  .stream();
          runner.Run(stream);
        } else {
          dx->mutable_data<T>(ctx.GetPlace());
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
          tmp_dx.Resize(framework::make_ddim({dout_first_dim, y->dims()[0]}));

          const auto& runner_matmul =
              NpuOpRunner("MatMul", {tmp_dout, *y}, {tmp_dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }
208 209 210 211 212 213
      }
      if (dy) {
        // flatten x.shape [2,3,4] => [6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
214
        tmp_x.ShareDataWith(*x);
215 216 217
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        // mamtul [6,4] [6,5] =>[4,5]
        dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
218
        const auto& runner_dy =
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy},
                        {{"transpose_x1", true}, {"transpose_x2", false}});
        runner_dy.Run(stream);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
    mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);