qat.py 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.quant.quant_layers as quant_layers
25
from paddle.fluid import dygraph, core, framework, unique_name
26
from paddle.fluid.framework import IrGraph
27
from paddle.fluid.executor import Executor, global_scope
28 29
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
30 31
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
32
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
33
from paddle.fluid.log_helper import get_logger
34
from .. import quantization_pass
C
cc 已提交
35
from . import utils
36
from . import fuse_utils
37

C
cc 已提交
38
__all__ = ['ImperativeQuantAware']
39

40 41 42
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
43 44 45 46


class ImperativeQuantAware(object):
    """
47
    Applying quantization aware training (QAT) to the dgraph model.
48 49
    """

50
    def __init__(self,
51 52 53 54
                 quantizable_layer_type=[
                     'Conv2D', 'Linear', 'Conv2DTranspose',
                     'ColumnParallelLinear', 'RowParallelLinear'
                 ],
55 56 57 58 59 60 61 62 63 64
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 fuse_conv_bn=False,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
65
        """
66 67 68
        The constructor for ImperativeQuantAware.

        Args:
69 70
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
71
            weight_quantize_type(str): quantization type for weights,
72
                which supports 'abs_max' and 'channel_wise_abs_max'.
73 74
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
75 76 77 78 79
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
80 81
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
82 83 84
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
85
            fuse_conv_bn(bool): Whether to fuse conv and bn, default is False.
C
cc 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
102 103 104
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
105 106 107 108 109
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
110 111 112
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
113 114 115
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
116

117
        Note:
C
cc 已提交
118 119 120 121
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
122 123

        Examples 1:
124 125
        .. code-block:: python

126
            import paddle
127 128
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
129
            from paddle.vision.models \
130 131 132 133 134 135 136 137 138 139
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
140
            # The outscale of outputs in supportted layers would be calculated.
141 142 143 144 145 146
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
147
            imperative_qat.save_quantized_model(
148 149 150 151 152
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
196 197
        """
        super(ImperativeQuantAware, self).__init__()
198
        self.fuse_conv_bn = fuse_conv_bn
H
huangxu96 已提交
199

C
cc 已提交
200 201 202 203 204 205 206 207 208 209 210
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
211
        }
C
cc 已提交
212 213 214

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

X
XGZhang 已提交
215
        self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate)
216 217 218

    def quantize(self, model):
        """
C
cc 已提交
219 220 221 222 223
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
224 225

        Args:
226
            model(paddle.nn.Layer): the model to be quantized.
227 228
        Returns:
            None
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
264
        """
C
cc 已提交
265 266
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
267 268 269 270

        if self.fuse_conv_bn:
            fuse_utils.fuse_conv_bn(model)

C
cc 已提交
271
        self._quantize_inputs.apply(model)
272
        self._quantize_outputs.apply(model)
273
        return model
C
cc 已提交
274 275

    def save_quantized_model(self, layer, path, input_spec=None, **config):
276 277
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
278 279 280 281 282 283 284 285


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

286 287 288 289 290 291 292 293 294 295 296
    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
297 298 299 300 301 302 303 304
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
305 306
            utils.layer_name_map[layer] if layer in
            utils.layer_name_map else layer for layer in quantizable_layer_type)
C
cc 已提交
307
        for layer in self._quantizable_layer_type:
308 309
            assert not isinstance(layer, str) \
                and layer in utils.fake_quant_input_layers, \
C
cc 已提交
310 311 312 313 314
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
315 316
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
317
            "Unsupported weight_quantize_type: %s. It can only " \
318 319 320
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
321
            "Unsupported activation_quantize_type: %s. It can " \
322
            "only be moving_average_abs_max now." \
C
cc 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
356 357 358 359 360 361 362 363 364 365 366 367
        """
        Quantize the weights and activations to calculate for specific 
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

C
cc 已提交
368 369 370
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

371 372 373 374
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
375 376
                continue

377 378 379 380 381
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
382

383
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
384
        quant_layer_name = None
385 386

        for key, value in utils.layer_name_map.items():
C
cc 已提交
387 388 389 390 391 392
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
393

394
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
395

396

397 398
class ImperativeQuantizeOutputs(object):
    """
399
    Calculate the output scales for target layers.
400 401
    """

402
    def __init__(self, moving_rate=0.9):
403
        """
404
        The constructor for ImperativeQuantizeOutputs.
405 406

        Args:
C
cc 已提交
407 408
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
409
        """
410
        super(ImperativeQuantizeOutputs, self).__init__()
411 412
        self._moving_rate = moving_rate

C
cc 已提交
413
    def apply(self, model):
414
        """
415 416
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
417 418

        Args:
419
            model(paddle.nn.Layer): The target model which would be
420
                calculate the output quantization scale.
421 422 423 424

        Returns:
            None
        """
C
cc 已提交
425 426
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
427

428
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
429 430
            if '_act_preprocess' in cur_name:
                continue
431
            if not self._is_target_layer(cur_layer):
432 433
                continue

434 435 436
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

437 438
            reduce_type = None

439
            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
440
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
441
                    cur_layer, self._moving_rate, reduce_type=reduce_type)
442
            else:
443
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
444
                    cur_layer, self._moving_rate, reduce_type=reduce_type)
445 446

            setattr(parent_layer, sub_name, cur_quant_layer)
447

448 449 450 451 452 453
    def save_quantized_model(self,
                             model,
                             path,
                             input_spec=None,
                             onnx_format=False,
                             **config):
454 455 456 457
        """
        Save the quantized model for the inference.

        Args:
458
            model (Layer): The model to be saved.
459 460 461 462 463 464 465
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
466 467
            onnx_format (bool, optional): Whether to export the quantized model 
                with format of ONNX. Default is False.
468 469 470 471
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
472
                The following options are currently supported:
473 474 475 476 477 478
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
479 480 481 482

        Returns:
            None
        """
483
        assert isinstance(model, dygraph.Layer), \
484 485
            "The model must be the instance of dygraph.Layer."

486
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
487 488

        is_dynamic_mode = False
489 490 491 492
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

493 494
        place = core.CPUPlace()
        scope = global_scope()
495 496 497
        exe = Executor(place)

        dirname = os.path.dirname(path)
498 499 500
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
501

502 503 504 505 506
        [infer_program, feed_target_names, fetch_targets
         ] = (load_inference_model(dirname=dirname,
                                   executor=exe,
                                   model_filename=model_filename,
                                   params_filename=params_filename))
507

508
        self._gather_scales(infer_program, scope, fetch_targets)
509

510 511 512 513 514 515 516 517 518
        # Remove `moving_average_abs_max_scale` node in sub graphs.
        graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
        for sub_graph in graph.all_sub_graphs():
            for _op in sub_graph.all_op_nodes():
                if _op.name() == "moving_average_abs_max_scale":
                    sub_graph.safe_remove_nodes(_op)
            sub_graph.resolve_hazard()
        infer_program = graph.to_program()

519
        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
520

521 522 523 524 525 526 527 528 529 530 531 532
        clip_extra = False
        if onnx_format:
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
            transform_pass = ReplaceFakeQuantDequantPass(scope, place)
            transform_pass.apply(graph)

            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
            infer_program = graph.to_program()

            clip_extra = True

533 534 535 536 537 538 539 540
        save_inference_model(dirname=dirname,
                             feeded_var_names=feed_target_names,
                             target_vars=fetch_targets,
                             executor=exe,
                             main_program=infer_program.clone(),
                             model_filename=model_filename,
                             params_filename=params_filename,
                             clip_extra=clip_extra)
541

542 543 544
        if is_dynamic_mode:
            paddle.disable_static()

545
    def _is_target_layer(self, layer):
546
        """
547
        Whether the layer needs to calculate output scales.
548
        """
549 550
        flag = False
        if isinstance(layer, dygraph.Layer):
551
            # exclude fake_quant ops in quant_layers file
552 553 554
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
555

556 557
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
558 559 560 561

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

562
        return flag
C
cc 已提交
563

564
    def _gather_scales(self, program, scope, fetch_targets):
565
        """
566
        Get all scales from fake ops, save them into the corresponding ops
567
        and delete all moving_average_abs_max_scale ops.
568
        """
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)
593
                        op._set_attr("with_quant_attr", True)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
614 615 616 617 618 619
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
                            argname + str(index) + "_threshold", out_scale)
                        previous_op._set_attr("out_threshold", out_scale)
620
                        previous_op._set_attr("with_quant_attr", True)
621 622 623

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
624 625 626 627 628
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
629 630 631

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
632

633
    def _set_skip_quant_attr(self, program):
634
        """
635
        Label the skip quantized ops.
636
        """
637 638 639 640
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
641
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
642 643 644 645 646 647 648

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
649 650 651
        target_op_types = [
            "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose"
        ]
G
guofei 已提交
652 653 654
        if in_op.type not in target_op_types:
            return False

655
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
656
            for arg_name in in_op.input_arg_names]
657
        return any(op is not None and op.type not in \
658
            utils.fake_quantize_dequantize_op_types for op in previous_ops)