Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d28162b9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2321
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d28162b9
编写于
9月 18, 2020
作者:
Z
Zhen Wang
提交者:
GitHub
9月 18, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove save_quantized_model in ImperativeQuantAware. (#27240)
上级
b6a4349d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
27 addition
and
92 deletion
+27
-92
python/paddle/fluid/contrib/slim/quantization/imperative/qat.py
.../paddle/fluid/contrib/slim/quantization/imperative/qat.py
+7
-76
python/paddle/fluid/contrib/slim/tests/test_imperative_qat.py
...on/paddle/fluid/contrib/slim/tests/test_imperative_qat.py
+20
-16
未找到文件。
python/paddle/fluid/contrib/slim/quantization/imperative/qat.py
浏览文件 @
d28162b9
...
...
@@ -67,6 +67,7 @@ class ImperativeQuantAware(object):
Examples:
.. code-block:: python
import paddle
from paddle.fluid.contrib.slim.quantization
\
import ImperativeQuantAware
from paddle.vision.models
\
...
...
@@ -86,13 +87,12 @@ class ImperativeQuantAware(object):
# ...
# Save quant model for the inference.
imperative_qat.save_quantized_model(
dirname="./resnet50_qat",
model=model,
input_shape=[(3, 224, 224)],
input_dtype=['float32'],
feed=[0],
fetch=[0])
paddle.jit.save(
layer=model,
model_path="./resnet50_qat",
input_spec=[
paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype='float32')])
"""
super
(
ImperativeQuantAware
,
self
).
__init__
()
self
.
_weight_bits
=
weight_bits
...
...
@@ -148,75 +148,6 @@ class ImperativeQuantAware(object):
quant_layer
=
self
.
_get_quantized_counterpart
(
layer
)
setattr
(
obj
,
target
,
quant_layer
)
def
save_quantized_model
(
self
,
dirname
,
model
,
input_shape
,
input_dtype
,
feed
,
fetch
,
append_batch_size
=
True
):
"""
Save the quantized model for the inference.
Args:
dirname (str): the directory to save the quantized model.
model(fluid.dygraph.Layer): the quantized model to be saved.
input_shape(list[tuple(int)]): The shape value for each input,
e.g. [(3, 224, 224)].
input_dtype(list[str]): The dtype value for each input,
e.g. ['float32'].
feed(list[int]): the indices of the input variables of the
imperative functions which will be saved as input variables in
inference model.
fetch(list[int]): the indices of the returned variable of the
imperative functions which will be saved as output variables in
inference model.
append_batch_size(bool, optional):
If true, it prepends an extra axis to the input_shape, meanwhile,
the input_shape shouldn't contain the batch size dimension.
Otherwise, it just uses the input_shape. Default True.
Returns:
None
"""
assert
isinstance
(
input_shape
,
list
),
"The parameter `input_shape` shoubld be a list."
assert
isinstance
(
input_dtype
,
list
),
"The parameter `input_dtype` shoubld be a list."
assert
isinstance
(
feed
,
list
),
"The parameter `feed` shoubld be a list."
assert
isinstance
(
fetch
,
list
),
"The parameter `fetch` shoubld be a list."
assert
len
(
input_shape
)
==
len
(
input_dtype
),
"The length of input_shape should be equal to input_dtype's."
assert
len
(
input_dtype
)
==
len
(
feed
),
"The length of input_shape should be equal to feed's."
with
dygraph
.
guard
():
model
.
eval
()
input_vars
=
[]
for
i
,
(
shape
,
dtype
)
in
enumerate
(
zip
(
input_shape
,
input_dtype
)):
if
append_batch_size
:
shape
=
[
None
]
+
list
(
shape
)
# Note(Aurelius84): need a elegant way to name this.
in_spec
=
paddle
.
static
.
InputSpec
(
shape
,
dtype
,
'feed_%d'
%
i
)
input_vars
.
append
(
in_spec
)
# use `declarative` to convert dygraph into static program
model
.
forward
=
dygraph
.
jit
.
declarative
(
model
.
forward
,
input_spec
=
input_vars
)
outputs
=
model
.
forward
.
concrete_program
.
outputs
input_spec
=
[
input_vars
[
i
]
for
i
in
feed
]
configs
=
dygraph
.
jit
.
SaveLoadConfig
()
configs
.
separate_params
=
True
if
not
isinstance
(
outputs
,
(
tuple
,
list
)):
outputs
=
[
outputs
]
configs
.
output_spec
=
[
outputs
[
i
]
for
i
in
fetch
]
dygraph
.
jit
.
save
(
layer
=
model
,
model_path
=
dirname
,
input_spec
=
input_spec
,
configs
=
configs
)
def
_get_quantized_counterpart
(
self
,
layer
):
quant_layers
=
tuple
(
self
.
_quant_layers_map
.
values
())
quantized_counterpart
=
tuple
(
'Quantized'
+
k
...
...
python/paddle/fluid/contrib/slim/tests/test_imperative_qat.py
浏览文件 @
d28162b9
...
...
@@ -221,7 +221,7 @@ class TestImperativeQat(unittest.TestCase):
model_dict
=
lenet
.
state_dict
()
fluid
.
save_dygraph
(
model_dict
,
"save_temp"
)
# test the correctness of `
save_quantized_model
`
# test the correctness of `
paddle.jit.save
`
data
=
next
(
test_reader
())
test_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
...
...
@@ -231,13 +231,14 @@ class TestImperativeQat(unittest.TestCase):
# save inference quantized model
path
=
"./mnist_infer_model"
imperative_qat
.
save_quantized_model
(
dirname
=
path
,
model
=
lenet
,
input_shape
=
[(
1
,
28
,
28
)],
input_dtype
=
[
'float32'
],
feed
=
[
0
],
fetch
=
[
0
])
paddle
.
jit
.
save
(
layer
=
lenet
,
model_path
=
path
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
])
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
...
...
@@ -245,7 +246,10 @@ class TestImperativeQat(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
fluid
.
io
.
load_inference_model
(
dirname
=
path
,
executor
=
exe
))
dirname
=
path
,
executor
=
exe
,
model_filename
=
"__model__"
,
params_filename
=
"__variables__"
))
after_save
,
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
test_data
},
fetch_list
=
fetch_targets
)
...
...
@@ -332,13 +336,13 @@ class TestImperativeQat(unittest.TestCase):
if
batch_id
%
100
==
0
:
_logger
.
info
(
'{}: {}'
.
format
(
'loss'
,
avg_loss
.
numpy
()))
imperative_qat
.
save_quantized_model
(
dirname
=
"./dynamic_mnist"
,
model
=
lenet
,
input_s
hape
=
[(
1
,
28
,
28
)],
input_dtype
=
[
'float32'
],
feed
=
[
0
],
fetch
=
[
0
])
paddle
.
jit
.
save
(
layer
=
lenet
,
model
_path
=
"./dynamic_mnist"
,
input_s
pec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
])
# static graph train
_logger
.
info
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录