qat.py 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
from paddle.fluid import dygraph, core, framework, unique_name
24
from paddle.fluid.executor import Executor
25 26
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
27 28
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
29 30
from paddle.fluid.log_helper import get_logger
from . import quant_nn
31
from .. import quantization_pass
C
cc 已提交
32
from . import utils
33

C
cc 已提交
34
__all__ = ['ImperativeQuantAware']
35 36 37 38 39 40 41

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
C
cc 已提交
42
    Applying quantization aware training (QAT) to dgraph model.
43 44 45
    """

    def __init__(self,
C
cc 已提交
46
                 quantizable_layer_type=['Conv2D', 'Linear'],
47 48
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
C
cc 已提交
49 50
                 weight_bits=8,
                 activation_bits=8,
51
                 moving_rate=0.9,
52 53 54 55
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
56
        """
57 58 59
        The constructor for ImperativeQuantAware.

        Args:
60 61
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
62
            weight_quantize_type(str): quantization type for weights,
63
                which supports 'abs_max' and 'channel_wise_abs_max'.
64 65
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
66 67 68 69 70
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
71 72
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
92 93 94
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
95 96 97 98 99
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
100 101 102
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
103 104 105
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
106

107
        Note:
C
cc 已提交
108 109 110 111
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
112 113

        Examples 1:
114 115
        .. code-block:: python

116
            import paddle
117 118
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
119
            from paddle.vision.models \
120 121 122 123 124 125 126 127 128 129
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
130
            # The outscale of outputs in supportted layers would be calculated.
131 132 133 134 135 136
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
137
            imperative_qat.save_quantized_model(
138 139 140 141 142
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
186 187
        """
        super(ImperativeQuantAware, self).__init__()
H
huangxu96 已提交
188

C
cc 已提交
189 190 191 192 193 194 195 196 197 198 199
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
200
        }
C
cc 已提交
201 202 203 204

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

        self._calc_output_scale = ImperativeCalcOutputScale()
205 206 207

    def quantize(self, model):
        """
C
cc 已提交
208 209 210 211 212
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
213 214 215 216 217 218

        Args:
            model(fluid.dygraph.Layer): the model to be quantized.
        Returns:
            None
        """
C
cc 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
        self._quantize_inputs.apply(model)
        self._calc_output_scale.apply(model)

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        self._calc_output_scale.save_quantized_model(layer, path, input_spec,
                                                     **config)


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
254 255
            utils.quant_input_layers_map[layer]
            if layer in utils.quant_input_layers_map else layer
C
cc 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
            assert not isinstance(layer, str), \
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
        assert weight_quantize_type in quantize_type, \
            "Unsupported weight_quantize_type: %s. It can only " \
            "be abs_max or moving_average_abs_max or " \
            "channel_wise_abs_max." % weight_quantize_type
        assert activation_quantize_type != 'channel_wise_abs_max' \
            and activation_quantize_type in quantize_type, \
            "Unsupported activation_quantize_type: %s. It can " \
            "only be abs_max or moving_average_abs_max now." \
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

308
        for name, layer in model.named_sublayers():
C
cc 已提交
309 310 311
            if not isinstance(layer, self._quantizable_layer_type) \
                or (hasattr(layer, "skip_quant") \
                    and layer.skip_quant == True):
312 313
                continue

C
cc 已提交
314
            # TODO(jc): optimize this module
315 316
            last_idx = 0
            idx = 0
317
            obj = model
318 319
            while idx < len(name):
                if (name[idx] == '.'):
C
cc 已提交
320
                    if hasattr(obj, name[last_idx:idx]):
321 322 323 324 325
                        obj = getattr(obj, name[last_idx:idx])
                        last_idx = idx + 1
                idx += 1
            target = name[last_idx:idx]

C
cc 已提交
326
            quant_layer = self._get_quantized_layer(layer)
327 328
            setattr(obj, target, quant_layer)

C
cc 已提交
329 330
    def _get_quantized_layer(self, layer):
        quant_layer_name = None
331
        for key, value in utils.quant_input_layers_map.items():
C
cc 已提交
332 333 334 335 336 337
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
338

339
        layer_with_weight = ['QuantizedConv2D', 'QuantizedLinear']
C
cc 已提交
340 341
        if quant_layer_name not in layer_with_weight:
            quant_layer_name = 'QuantizedNoweightLayer'
342

C
cc 已提交
343
        return quant_nn.__dict__[quant_layer_name](layer, **self._kwargs)
344

345

C
cc 已提交
346
class ImperativeCalcOutputScale(object):
347
    def __init__(self, moving_rate=0.9):
348
        """
C
cc 已提交
349
        Add the logic of calculating and setting output scales of some layers. 
350 351

        Args:
C
cc 已提交
352 353
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
354
        """
C
cc 已提交
355
        super(ImperativeCalcOutputScale, self).__init__()
356 357
        self._moving_rate = moving_rate
        self._register_hook_handle_list = []
G
guofei 已提交
358
        self._out_scale_dict = collections.OrderedDict()
359

C
cc 已提交
360
    def apply(self, model):
361
        """
C
cc 已提交
362 363
        Insert the `moving_average_abs_max_scale` op to calculate output 
        scale of specific layers in model.
364 365

        Args:
C
cc 已提交
366
            model(fluid.dygraph.Layer): The target model which would be
367
                calculate the output quantization scale.
368 369 370 371

        Returns:
            None
        """
C
cc 已提交
372 373
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
374 375 376

        # Calculate the target ops's output scale, and don't consider
        # the skip_quant attr
377
        for _, layer in model.named_sublayers():
C
cc 已提交
378
            if self._is_target_layer(layer):
379 380 381 382
                self._init_scale_params(layer)
                hook_handle = layer.register_forward_post_hook(
                    self._calc_output_scale_hook)
                self._register_hook_handle_list.append(hook_handle)
383 384 385 386 387 388 389

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        """
        Save the quantized model for the inference.

        Args:
            layer (Layer): The Layer to be saved.
390 391 392 393 394 395 396 397 398 399 400
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
401
                The following options are currently supported:
402 403 404 405 406 407
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
408 409 410 411 412

        Returns:
            None
        """

413 414 415
        assert isinstance(layer, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

416 417
        self._gather_output_scale(layer)

418
        with dygraph.guard():
419 420 421 422 423
            layer.eval()
            for handle in self._register_hook_handle_list:
                handle.remove()
        paddle.jit.save(layer=layer, path=path, input_spec=input_spec, **config)

424 425 426 427 428 429 430
        if len(self._out_scale_dict) == 0:
            warnings.warn("Warning: No Layer of the model while to be " \
                          "saved contains the out_threshold attribute, so the " \
                          "generated inference model would not contain the " \
                          "out_threshold.")
            return

431 432
        # load static model
        is_dynamic_mode = False
433 434 435 436
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

437 438
        place = core.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else core.CPUPlace()
439 440 441
        exe = Executor(place)

        dirname = os.path.dirname(path)
442 443 444
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
445 446

        [infer_program, feed_target_names, fetch_targets] = (
447 448 449 450 451 452
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

453 454 455 456 457 458 459
        # TODO(jc): analyse whether the dygraph model has
        # several blocks before applying qat
        assert infer_program.num_blocks == 1, \
            "Quantization aware training (QAT) requires the program " \
            "only has a block for now. When the model has if-else or " \
            "while, the program will have several blocks."

460
        # set output scales to the static model
461 462 463 464
        self._save_output_scale(infer_program)

        # process skip quant
        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
465

466
        # save the final quantized model that has output scales
467 468 469 470 471
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
472
            main_program=infer_program.clone(),
473 474 475
            model_filename=model_filename,
            params_filename=params_filename)

476 477 478
        if is_dynamic_mode:
            paddle.disable_static()

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    def _gather_output_scale(self, layer):
        """
        Gather all output scales to self._out_scale_dict
        """
        with dygraph.guard():
            layer.eval()
            for _, sub_layer in layer.named_sublayers():
                if self._is_target_layer(sub_layer):
                    layer_name = sub_layer.full_name()
                    if hasattr(sub_layer, "_quant_out_scale"):
                        self._out_scale_dict[layer_name] = float(
                            sub_layer._quant_out_scale)

    def _save_output_scale(self, infer_program):
        """
        Save all output scales to the corresponding ops in static
        inference program.

        Because the Layer in dygraph may correspond to multiple ops
        in static program after being saved. To ensure correctness,
        the outscale collected for output of dygraph Layer can only
        be set to the last op in the corresponding ops in static program.
        """
        assert infer_program.num_blocks == 1, \
            "The inference program should only have a block."

        global_block = infer_program.global_block()
        target_ops = global_block.ops

        scale_idx = 0
        op_idx = 0
        attr_name = "out_threshold"

        for scale_name, scale_value in self._out_scale_dict.items():
            while True:
                if op_idx >= len(target_ops):
                    break

                op = target_ops[op_idx]
                if not self._is_scale_op_matched(scale_name, op, global_block):
                    op_idx += 1
                else:
                    if op.type in utils.weight_op_types \
                        and op_idx + 1 < len(target_ops) \
                        and target_ops[op_idx+1].type == "elementwise_add":
                        target_ops[op_idx + 1]._set_attr(attr_name, scale_value)
                        op_idx += 2
                    else:
                        op._set_attr(attr_name, scale_value)
                        op_idx += 1
                    scale_idx += 1
                    break

        if scale_idx != len(self._out_scale_dict):
            _logger.warning("Warning: the model have %s output scales, "\
                "but it only saves %s output scales." \
                % (len(self._out_scale_dict), scale_idx))

C
cc 已提交
537
    def _is_target_layer(self, layer):
538 539 540
        return isinstance(layer, tuple(utils.quant_output_layers_map.values())) \
            or ('quantized_' in layer.full_name() and \
                'quantized_noweight' not in layer.full_name())
C
cc 已提交
541

542 543 544 545 546
    def _init_scale_params(self, layer, name=None):
        """
        Init the scale params for calculating output scales and save them in the
        target layer.
        After the users define the dygraph model, the hooks for calculating output
G
guofei 已提交
547 548 549 550 551 552
        scales will not execute immediately. If the users load parameters form
        checkpoint and save the quantized inference model immediately, the inference
        model would not be saved successfully. Beacuse the dygraph_to_static requires
        that the parameters created in __init__, but the uniqueness of hook make it
        impossible to create parameters in __init__. To avoid this mistake, we define
        the scale parameters in the beginning instead of hook.
553 554 555 556 557 558 559 560 561 562 563 564
        """

        def _create_param(in_layer, first_name, last_name, dtype):
            prefix = '{}.{}'.format(first_name, last_name) \
                if first_name else 'outscale.{}'.format(last_name)
            attr = ParamAttr(
                name=unique_name.generate(prefix),
                initializer=Constant(1),
                trainable=False)
            param = in_layer.create_parameter(shape=[1], attr=attr, dtype=dtype)
            return param

C
cc 已提交
565 566 567
        dtype = layer._dtype if layer._dtype is not None else "float32"
        if dtype not in ["float32", "float64"]:
            return
568 569

        layer._quant_out_scale = _create_param(layer, name, "scale", dtype)
C
cc 已提交
570 571
        layer._quant_out_scale.stop_gradient = True

572
        layer._quant_out_state = _create_param(layer, name, "state", dtype)
C
cc 已提交
573 574
        layer._quant_out_state.stop_gradient = True

575
        layer._quant_out_accum = _create_param(layer, name, "accum", dtype)
C
cc 已提交
576 577
        layer._quant_out_accum.stop_gradient = True

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    def _is_scale_op_matched(self, scale_name, op, block):
        """
        Based on the op name and attrs to judge whether the op in
        program matches the scale_name. We must know the corresponding
        name between dgraph and static model.
        """
        fp_type = [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]
        if op.type in quantization_pass._op_real_in_out_name.keys():
            output_var_names = quantization_pass._get_op_output_var_names(op)
            for output_var_name in output_var_names:
                output_var_tensor = block.var(output_var_name)
                if output_var_tensor.dtype not in fp_type:
                    return False

        # corresponding_map: [name, op_types, function]
        # Note that, the items have priority in corresponding_map
        corresponding_map = [
            ['conv2d_tranpose', ['conv2d_transpose', \
                                'depthwise_conv2d_transpose'], None],
            ['conv2d', ['conv2d', 'depthwise_conv2d'], None],
            ['linear', ['matmul'], None],
            ['re_lu6', ['relu6'], None],
            ['p_re_lu', ['prelu'], None],
            ['leaky_re_lu', ['leaky_relu'], None],
            ['re_lu', ['relu'], None],
        ]

        for item in corresponding_map:
            if item[0] in scale_name:
                return (op.type in item[1]) and \
                    (len(item) == 2 or item[2] is None or item[2](op))

        return op.type in scale_name
C
cc 已提交
611

G
guofei 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def _set_skip_quant_attr(self, program):
        block = program.global_block()
        for op in block.ops:
            if self._is_skip_quant_op(block, op):
                op._set_attr("skip_quant", True)

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """

        def _find_previous_op(block, var_name):
            for op in block.ops:
                if var_name in op.output_arg_names:
                    return op

        target_op_types = ["conv2d", "depthwise_conv2d", "matmul"]
        if in_op.type not in target_op_types:
            return False

        previous_ops = [_find_previous_op(block, arg_name) \
            for arg_name in in_op.input_arg_names]
        return any(op is not None and op.type not in utils.fake_quantize_dequantize_types \
            for op in previous_ops )

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    def _calc_output_scale_hook(self, layer, input, output):
        """
        Create the MovingAverageAbsMaxScale layer for the target layer if needed.
        Execute MovingAverageAbsMaxScale layer to calculate the output scale. 
        """
        assert isinstance(output, (core.VarBase, framework.Variable)), \
            "Multiple outputs are not currently supported in ImperativeOutScale."

        fp_types = [core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64]
        if output.dtype in fp_types:
            if not hasattr(layer, "_out_scale"):
                self._out_scale = quant_nn.MovingAverageAbsMaxScale(
                    layer, output.name, self._moving_rate, output.dtype)
            # TODO (jc): consider the ops that have several outputs 
            self._out_scale(output)