compiler.py 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19
from .. import compat as cpt
X
Xin Pan 已提交
20
from . import framework
S
sneaxiy 已提交
21
from .framework import cuda_places, cpu_places
22 23 24

from . import core

X
Xin Pan 已提交
25 26
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

27 28
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
29 30
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
31 32 33 34 35 36 37 38


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


39 40
def _is_pserver_mode(main_program):
    main = main_program if main_program \
C
chengduo 已提交
41
        else framework.default_main_program()
42 43 44 45 46 47
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


C
chengduo 已提交
48 49 50 51 52 53 54 55
def _has_backward_op(graph):
    for node in graph.nodes():
        if node.is_op() and node.op() is not None and \
                node.op().type().endswith("_grad"):
            return True
    return False


56 57 58 59 60 61 62 63 64
def _prune_feed_ops(program):
    # prune the feed ops in the program.
    pop_idx = []
    for i, op in enumerate(program.global_block().ops):
        if op.type == "feed": pop_idx.append(i)
    for index in pop_idx[::-1]:
        program.global_block()._remove_op(index)


X
polish  
Xin Pan 已提交
65
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
66
    """
C
chengduo 已提交
67 68 69 70 71 72
    The CompiledProgram is used to transform a program or graph for
    various optimizations according to the configuration of build_strategy,
    for example, the operators' fusion in the computation graph, memory
    optimization during the execution of the computation graph, etc.
    For more information about build_strategy, please refer to
    :code:`fluid.BuildStrategy`.
X
polish  
Xin Pan 已提交
73

C
chengduo 已提交
74 75 76 77 78 79 80 81
    Args:
        program_or_graph (Graph|Program): This parameter is the Program or Graph
            being executed.
        build_strategy(BuildStrategy): This parameter is used to compile the
            program or graph with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`fluid.BuildStrategy`. The default is None.
X
Xin Pan 已提交
82

C
chengduo 已提交
83 84
    Returns:
        CompiledProgram
X
polish  
Xin Pan 已提交
85 86

    Example:
X
Xin Pan 已提交
87
        .. code-block:: python
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          place = fluid.CUDAPlace(0) # fluid.CPUPlace()
          exe = fluid.Executor(place)

          data = fluid.layers.data(name='X', shape=[1], dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          loss = fluid.layers.mean(hidden)
          fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          fluid.default_startup_program().random_seed=1
          exe.run(fluid.default_startup_program())
          compiled_prog = compiler.CompiledProgram(
                   fluid.default_main_program())

          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
111 112
    """

C
chengduo 已提交
113
    def __init__(self, program_or_graph, build_strategy=None):
X
Xin Pan 已提交
114 115
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
116
            # don't not create a new program here.
X
Xin Pan 已提交
117 118
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
119
            _prune_feed_ops(program_or_graph)
X
Xin Pan 已提交
120 121 122 123 124 125
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
            raise ValueError("Wrong program_to_graph type: %s" %
                             type(program_or_graph))

X
polish  
Xin Pan 已提交
126 127 128
        self._scope = None
        self._place = None
        self._executor = None
129 130
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
131
        self._is_inference = False
C
chengduo 已提交
132 133 134 135 136
        self._loss_name = None
        self._share_vars_from = None
        self._places = None
        self._build_strategy = build_strategy
        self._exec_strategy = None
137

X
Xin Pan 已提交
138 139 140 141
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
S
sneaxiy 已提交
142 143
                           share_vars_from=None,
                           places=None):
C
chengduo 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        """
        This interface is used to transform the input Program or Graph to a multi-graph
        to run the model in data parallel mode. Users can use the build_strategy and
        exec_strategy to set some optimizations that can be applied during the construction
        and computation of the Graph, such as reducing the number of AllReduce operations,
        specifying the size of the thread pool used in the computation Graph running the model,
        and so on. **Note: If build_strategy is specified when building CompiledProgram and calling
        with_data_parallel, build_strategy in CompiledProgram will be overwritten, therefore,
        if it is data parallel training, it is recommended to set build_strategy when calling
        with_data_parallel interface.**

        Args:
            loss_name (str): This parameter is the name of the loss variable of the model.
                **Note: If it is model training, you must set loss_name, otherwise the
                result may be problematic**. The default is None.
            build_strategy(BuildStrategy): This parameter is used to compile the
                program or graph with the specified options, such as operators' fusion
                in the computational graph and memory optimization during the execution
                of the computational graph. For more information about build_strategy,
                please refer to :code:`fluid.BuildStrategy`. The default is None.
            exec_strategy(ExecutionStrategy): exec_strategy specifies the options that can
                be changed when running the current model, such as the thread pool size.
                For more information about exec_strategy, please refer to :code:`fluid.ExecutionStrategy`.
                The default is None.
            share_vars_from(CompiledProgram): If share_vars_from is set, the current
                CompiledProgram will share the parameter value with the CompiledProgram
                specified by share_vars_from. This parameter needs to be set when model testing
                is required during model training, and the data parallel mode is used for
                training and testing. Since CompiledProgram will only distribute parameter
                variables to other devices when it is first executed, the CompiledProgram
                specified by share_vars_from must be run before the current CompiledProgram.
                The default is None.
            places(list(CUDAPlace)|list(CPUPlace)|None): This parameter specifies the device
                on which the model is running. If you want to run on GPU0 and GPU1, places are
                [fluid.CUDAPlace(0), fluid.CUDAPlace(1)]; if you want to run with 2 CPUs, places are
                [fluid.CPUPlace()] * 2. If the parameter is not set, i.e. the parameter is None,
                the available device will be obtained from the environment variable when the model
                is executed: If the GPU is used, the currently available device ID is obtained
                from the environment variable FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES when
                the model is executed; CPU, when the model is executed, the currently available
                CPU number is obtained from the environment variable CPU_NUM. For example,
                export CPU_NUM=4, if the environment variable is not set, the executor will
                add the variable to the environment variable and set its value to 1.
                The default is None.

        Returns:
            CompiledProgram
X
Xin Pan 已提交
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        Example:
            .. code-block:: python

              import paddle.fluid as fluid
              import paddle.fluid.compiler as compiler
              import numpy
              import os

              use_cuda = True
              place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

              # NOTE: If you use CPU to run the program, you need
              # to specify the CPU_NUM, otherwise, fluid will use
              # all the number of the logic core as the CPU_NUM,
              # in that case, the batch size of the input should be
              # greater than CPU_NUM, if not, the process will be
              # failed by an exception.
              if not use_cuda:
                  os.environ['CPU_NUM'] = str(2)

              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

              fluid.default_startup_program().random_seed=1
              exe.run(fluid.default_startup_program())
              compiled_prog = compiler.CompiledProgram(
                       fluid.default_main_program()).with_data_parallel(
                                loss_name=loss.name)

              x = numpy.random.random(size=(10, 1)).astype('float32')
              loss_data, = exe.run(compiled_prog,
                                   feed={"X": x},
                                   fetch_list=[loss.name])
X
Xin Pan 已提交
229
        """
230
        assert not self._is_data_parallel, "Already compiled with parallel."
X
Xin Pan 已提交
231
        assert not self._is_inference, "Cannot compile both data parallel and inference"
232
        self._is_data_parallel = True
C
chengduo 已提交
233 234 235 236 237
        # FIXME(zcd): Currently, the build_strategy can be set during creating
        # CompiledProgram or calling with_data_parallel, and it may be confusing,
        # but in the long run, we should set up build_strategy only when creating
        # CompiledProgram, and exec_strategy should be deprecated.
        if build_strategy is not None: self._build_strategy = build_strategy
238 239
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
240
        self._share_vars_from = share_vars_from
C
chengduo 已提交
241 242 243 244 245 246 247 248 249
        self._places = places

        if _has_backward_op(self._graph):
            assert self._loss_name is not None, "The loss_name should be set here."

        if self._places is not None:
            if not isinstance(self._places, (list, tuple)):
                self._places = [self._places]

250 251
        return self

F
flame 已提交
252
    def _with_inference_optimize(self, config):
F
flame 已提交
253 254 255 256 257 258 259
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
X
Xin Pan 已提交
260
        assert not self._is_data_parallel, "Cannot compile both data parallel and inference"
X
Xin Pan 已提交
261 262
        assert not self._is_inference, "Already compiled with inference"

F
flame 已提交
263 264 265 266 267 268 269
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
270

F
flame 已提交
271
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
272 273
        raise NotImplementedError()

C
chengduo 已提交
274
    def _compile_data_parallel(self, places, use_cuda=False, scope=None):
X
polish  
Xin Pan 已提交
275
        if self._share_vars_from:
276
            if scope:
X
polish  
Xin Pan 已提交
277
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
C
chengduo 已提交
278 279 280
            if not self._is_data_parallel:
                raise ValueError(
                    "Currently, only data parallel mode need share_vars_from.")
X
polish  
Xin Pan 已提交
281 282 283 284 285 286 287 288 289
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
290
            assert scope is not None, ""
X
polish  
Xin Pan 已提交
291
            self._local_scopes = []
292

C
chengduo 已提交
293 294 295 296 297 298 299 300 301 302
        assert isinstance(places, tuple) or isinstance(places, list), \
            "Currently , The places type only should be list or tuple, \n" \
            "but the input type is {}.".format(type(places))

        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
        self._build_strategy.is_distribution = _is_pserver_mode(self._program)

        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
S
sneaxiy 已提交
303
        self._exec_strategy.use_cuda = use_cuda
304 305 306 307 308

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduo 已提交
309
                self._exec_strategy.num_threads = len(places) * 4
310
            else:
C
chengduo 已提交
311 312 313 314 315 316
                self._exec_strategy.num_threads = len(places) * 2

        if self._build_strategy.num_trainers > 1:
            assert self._is_data_parallel, \
                "If you use multi-trainer to train the model, you should use "\
                "the data parallel model, i.e. calling with_data_parallel function."
317

X
Xin Pan 已提交
318 319
        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
320
        # TODO(gongwb): let user to set them once.
X
Xin Pan 已提交
321 322 323
        if self._program and self._build_strategy.num_trainers > 1 and \
                self._program._trainers_endpoints:
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
324

325
            assert self._build_strategy.num_trainers == len(
X
Xin Pan 已提交
326 327 328
                tps), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = tps

329 330
        if self._program:
            self._build_strategy.nccl_comm_num = self._program._nccl_comm_num
331 332
            self._build_strategy.use_hierarchical_allreduce = self._program._use_hierarchical_allreduce
            self._build_strategy.hierarchical_allreduce_inter_nranks = self._program._hierarchical_allreduce_inter_nranks
333

Q
qingqing01 已提交
334 335 336
        if self._build_strategy.sync_batch_norm:
            self._build_strategy.enable_sequential_execution = True

X
Xin Pan 已提交
337
        self._persistable_vars = []
Z
Zhen Wang 已提交
338 339 340 341
        for node in self._graph.nodes():
            if node.is_var() and node.var() is not None and node.var().persistable() and \
                    node.var().type() != core.VarDesc.VarType.RAW:
                self._persistable_vars.append(cpt.to_text(node.name()))
342

C
chengduo 已提交
343 344
        places = list(map(_place_obj, places))

Y
Yan Xu 已提交
345 346 347 348 349 350 351 352 353 354 355
        # ParallelExecutor would broadcast all the parameters during initializing.
        # The parameters of each process should be in the same ordered for the data-parallelism
        # distributed training to keep the broadcast correct.
        self._persistable_vars = list(set(self._persistable_vars))
        self._persistable_vars.sort()

        return core.ParallelExecutor(
            places, self._persistable_vars,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy, self._graph)
356

F
flame 已提交
357 358 359
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

360
    def _compile(self, scope, place):
X
Xin Pan 已提交
361 362 363 364 365 366 367 368 369 370
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
371
        if self._compiled:
X
polish  
Xin Pan 已提交
372 373
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
S
sneaxiy 已提交
374
            if place and not self._place._equals(place):
X
polish  
Xin Pan 已提交
375
                raise ValueError("Cannot compile with different place")
376
            return self
X
fix  
Xin Pan 已提交
377
        self._compiled = True
378 379 380

        self._scope = scope
        self._place = place
C
chengduo 已提交
381 382

        if self._is_inference:
F
flame 已提交
383
            self._executor = self._compile_inference()
384
        else:
C
chengduo 已提交
385 386 387 388 389 390 391 392
            if self._is_data_parallel:
                self._places = self._get_places(self._place, self._places)
            else:
                self._places = [self._place]
            self._executor = self._compile_data_parallel(
                use_cuda=isinstance(self._place, core.CUDAPlace),
                scope=self._scope,
                places=self._places)
393
        return self
C
chengduo 已提交
394 395 396 397 398 399 400 401 402 403 404 405

    def _get_places(self, place, place_list):
        has_set_place = (place_list is not None)
        if has_set_place:
            for p in place_list:
                assert p._type() == place._type(), \
                    "Place type not match. You may set the wrong type of places"
        else:
            place_list = cuda_places() if isinstance(
                place, core.CUDAPlace) else cpu_places()
        assert place_list, "no place for execution"
        return place_list