tensor.py 10.5 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
Q
Qiao Longfei 已提交
19
from ..initializer import Constant
X
xuwei06 已提交
20 21
from ..core import DataType
import numpy
Y
Yu Yang 已提交
22 23

__all__ = [
24 25
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
26
    'create_global_var',
27 28 29 30 31 32 33 34
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'ones',
    'zeros',
Y
Yu Yang 已提交
35 36 37
]


X
xuwei06 已提交
38
def create_tensor(dtype, name=None, persistable=False):
Y
Yu Yang 已提交
39
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
40 41
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
42 43


44 45
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
46
                     name=None,
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
Q
Qiao Longfei 已提交
65
    helper = LayerHelper("create_parameter", **locals())
66
    if attr is None:
X
xuwei06 已提交
67
        attr = ParamAttr(name=name)
68 69 70 71
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


Q
Qiao Longfei 已提交
72 73 74 75 76 77 78 79 80
def create_global_var(shape, value, dtype, persistable=False, name=None):
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
        var, initializer=Constant(value=float(value)))
    return var


81
def cast(x, dtype):
Y
Yu Yang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


97
def concat(input, axis=0):
Y
Yu Yang 已提交
98
    """
99 100 101
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
102
    and returns that as the output.
103 104 105 106 107 108 109 110 111 112 113

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121 122 123 124
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


125
def sums(input, out=None):
K
kavyasrinet 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
          mean_a0 = layers.mean(x=a0)
          mean_a1 = layers.mean(x=a1)
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


156
def assign(input, output):
157 158 159 160 161 162
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
163
        input(Variable|numpy.ndarray): The source variable
164 165 166 167 168 169 170 171 172 173 174
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
175
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
176 177 178 179 180 181 182 183 184 185
    if isinstance(input, Variable):
        helper.append_op(
            type='scale',
            inputs={'X': [input]},
            outputs={'Out': [output]},
            attrs={'scale': 1.0})
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == DataType.FP32:
            value_name = "fp32_values"
186
            values = [float(v) for v in input.flat]
X
xuwei06 已提交
187 188
        elif dtype == DataType.INT32:
            value_name = "int32_values"
189
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
190 191
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
192 193 194
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
195 196 197 198 199 200 201

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
202
                value_name: values
X
xuwei06 已提交
203 204 205 206
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
207 208 209
    return output


Q
QI JUN 已提交
210
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
211
    """
212 213
    **fill_constant**

214 215
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
216

217
    The attribute `stop_gradient` of the created tensor is set to True.
218 219

    Args:
220 221 222 223
        shape(tuple|list|None): Shape of the output tensor.
        dtype(np.dtype|core.DataType|str): Data type of the output tensor.
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
224 225

    Returns:
226
        Variable: The tensor variable storing the output.
227 228 229 230 231

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
232
    """
233

Y
Yu Yang 已提交
234 235 236 237 238 239 240
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
241 242 243 244 245 246
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'force_cpu': force_cpu
        })
Y
Yu Yang 已提交
247 248 249 250 251 252 253 254 255
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
256
                                  output_dim_idx=0):
257 258 259
    """
    **fill_constant_batch_size_like**

K
kavyasrinet 已提交
260 261 262
    This function creates a tensor of specified *shape*, *dtype* and batch size,
    and initializes this with a constant supplied in *value*. The batch size is
    obtained from the `input` tensor.
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

280 281
          data = fluid.layers.fill_constant_batch_size_like(
              input=like, shape=[1], value=0, dtype='int64')
282
    """
Y
Yu Yang 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yang Yu 已提交
300
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
301
    """
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
320 321 322 323
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
324
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
325
    """
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
344 345
    """
    return fill_constant(value=0.0, **locals())