sharding_optimizer.py 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import unique_name, core
import paddle.fluid as fluid

from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
J
update  
JZ-LIANG 已提交
19
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op
20 21 22 23 24
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
W
update  
WangXi 已提交
25
from .sharding.offload_helper import OffloadHelper
26 27
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
J
update  
JZ-LIANG 已提交
28

29
import logging
30 31 32 33 34 35
from functools import reduce

__all__ = ["ShardingOptimizer"]


class ShardingOptimizer(MetaOptimizerBase):
S
sandyhouse 已提交
36 37
    """Sharding Optimizer."""

38 39 40 41 42 43
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
44 45
            "LarsOptimizer",
            "LambOptimizer",
S
update  
sandyhouse 已提交
46
            # "ModelParallelOptimizer",
S
sandyhouse 已提交
47
            "PipelineOptimizer",
48 49 50 51 52 53 54 55 56 57 58 59
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()

S
update  
sandyhouse 已提交
60 61 62 63
        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self._as_outer_parallelism = False
        self._inner_parallelism_size = None

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
        dist_strategy.sharding_configs = {"fuse_broadcast_MB": 32}

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
S
sandyhouse 已提交
84
        """Implementation of minimize."""
85 86 87 88
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1
89 90
        self._fuse_broadcast_MB = self.user_defined_strategy.sharding_configs[
            "fuse_broadcast_MB"]
91 92
        self.hybrid_dp = self.user_defined_strategy.sharding_configs[
            "hybrid_dp"]
S
update  
sandyhouse 已提交
93 94 95
        self._as_outer_parallelism = self.user_defined_strategy.sharding_configs[
            "as_outer_parallelism"]
        self._inner_parallelism_size = int(
S
sandyhouse 已提交
96
            self.user_defined_strategy.sharding_configs["parallelism"])
S
update  
sandyhouse 已提交
97 98
        self.use_pipeline = self.user_defined_strategy.sharding_configs[
            "use_pipeline"]
S
sandyhouse 已提交
99 100
        self.acc_steps = self.user_defined_strategy.sharding_configs[
            "acc_steps"]
S
update  
sandyhouse 已提交
101 102
        self.schedule_mode = self.user_defined_strategy.sharding_configs[
            "schedule_mode"]
S
sandyhouse 已提交
103
        self.pp_bz = self.user_defined_strategy.sharding_configs["pp_bz"]
R
update  
root 已提交
104 105
        self.pp_allreduce_in_optimize = self.user_defined_strategy.sharding_configs[
            "pp_allreduce_in_optimize"]
106 107 108 109

        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
S
update  
sandyhouse 已提交
110
        if self.use_pipeline:
S
sandyhouse 已提交
111 112
            pp_optimizer = fluid.optimizer.PipelineOptimizer(self.inner_opt,
                                                             self.acc_steps)
S
update  
sandyhouse 已提交
113 114
            main_program = loss.block.program
            main_program._pipeline_opt = dict()
S
update  
sandyhouse 已提交
115
            main_program._pipeline_opt['schedule_mode'] = self.schedule_mode
S
sandyhouse 已提交
116
            main_program._pipeline_opt['pp_bz'] = self.pp_bz
S
sandyhouse 已提交
117 118 119
            pp_rank = self.role_maker._worker_index() // (
                self.user_defined_strategy.sharding_configs[
                    'sharding_group_size'] * self._inner_parallelism_size)
S
update  
sandyhouse 已提交
120 121 122 123
            main_program._pipeline_opt['local_rank'] = pp_rank
            main_program._pipeline_opt[
                'global_rank'] = self.role_maker._worker_index()
            main_program._pipeline_opt['use_sharding'] = True
S
update  
sandyhouse 已提交
124 125
            main_program._pipeline_opt['ring_id'] = 20
            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
S
update  
sandyhouse 已提交
126 127 128 129 130
                loss, startup_program, parameter_list, no_grad_set)
            self.pipeline_nodes = len(program_list)
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
131 132 133

        if startup_program is None:
            startup_program = default_startup_program()
S
update  
sandyhouse 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        if self.use_pipeline:
            startup_program = startup_program._pipeline_opt['startup_program']
            #main_program = main_program._pipeline_opt['section_program']['program']
            print("pp_rank:", pp_rank)
            main_program = program_list[pp_rank]['program']
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads

        else:
            main_block = loss.block
150 151 152 153
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

S
update  
sandyhouse 已提交
154 155
        if self.use_pipeline:
            pp_optimizer._rename_gradient_var_name(main_block)
S
update  
sandyhouse 已提交
156 157 158
            pp_optimizer._accumulate_gradients(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
S
update  
sandyhouse 已提交
159

160 161 162 163 164 165 166 167 168 169 170 171
        # step1: set_up
        self._set_up(params_grads)

        # step2: split_program
        self._split_program(main_block)

        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

        # step4: insert reduce_sum for grad
S
update  
sandyhouse 已提交
172 173 174 175 176 177 178
        # grad_scale_coeff = self.role_maker._worker_num()
        # if self._as_outer_parallelism:
        #     grad_scale_coeff = grad_scale_coeff / self._inner_parallelism_size
        # insert_scale_loss_grad_ops(main_block, scale=1.0 / grad_scale_coeff)
        sharding_group_size = self.user_defined_strategy.sharding_configs[
            'sharding_group_size']
        insert_scale_loss_grad_ops(main_block, scale=1.0 / sharding_group_size)
179 180 181 182 183
        main_block._sync_with_cpp()

        # step5: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)
S
update  
sandyhouse 已提交
184 185 186 187
        if self.hybrid_dp:
            self._initialization_broadcast(startup_program)

        if self.use_pipeline:
R
update  
root 已提交
188
            # pp_optimizer._rename_gradient_var_name(main_block)
S
update  
sandyhouse 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
            # crop ops
            for idx, op in reversed(list(enumerate(main_block.ops))):
                # if op.type == 'fill_constant' and int(op.attr('op_role')) == 16:
                #     out_name = op.output_arg_names[0]
                #     if not 'GRAD' in out_name: continue
                #     param_name = out_name.strip("@GRAD")
                #     #if main_block.has_var(out_name): continue
                #     if self._shard.has_param(param_name): continue
                #     main_block._remove_op(idx)
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
                        main_block._remove_op(idx)

S
sandyhouse 已提交
204 205 206 207 208 209 210 211 212 213 214
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)
            #param_list = []
            #for param_name, grad_name in params_grads:
            #    if self._shard.has_param(param_name):
            #        param_list.append(param_name)
S
update  
sandyhouse 已提交
215
            #pp_optimizer._clear_gradients(main_block, param_list) 
S
update  
sandyhouse 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            #accumulated_grad_names = pp_optimizer._accumulate_gradients(
            #    main_block)
            # accumulated_grad_names = sorted(accumulated_grad_names)
            if self.pp_allreduce_in_optimize:
                print("persistable FP32 grad: ")
                print(accumulated_grad_names)
                first_optimize_op_index = get_first_check_finite_and_unscale_op_idx(
                    main_block)
                insert_reduce_ops(
                    main_block,
                    first_optimize_op_index,
                    self.sharding_ring_id,
                    accumulated_grad_names,
                    self._shard,
                    core.op_proto_and_checker_maker.OpRole.Optimize,
                    use_calc_stream=True)
S
update  
sandyhouse 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
            #if not self._shard.has_param(param_name): continue
            ##if not main_block.has_var(grad_name): continue
            #assert main_block.has_var(grad_name)
            #grad_var = main_block.vars[grad_name]
            #grad_var.persistable = True
            #main_block._insert_op(
            #    index=0,
            #    type='fill_constant',
            #    inputs={},
            #    outputs={'Out': [grad_var]},
            #    attrs={
            #        'shape': grad_var.shape,
            #        'dtype': grad_var.dtype,
            #        'value': float(0),
            #        #self._op_device_key: device,
            #        # a trick to run this op once per mini-batch
            #        'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
            #    })

S
update  
sandyhouse 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            #def _create_var(block, ref_var, name):
            #    """
            #    Create a new var for block, which has the same type,
            #    shape and dtype as ref_var, then rename it with the
            #    name `name`.
            #    """
            #    new_var = block.create_var(
            #        name=name,
            #        shape=ref_var.shape,
            #        dtype=ref_var.dtype,
            #        type=ref_var.type,
            #        lod_level=ref_var.lod_level,
            #        persistable=ref_var.persistable,
            #        is_data=ref_var.is_data,
            #        need_check_feed=ref_var.desc.need_check_feed())
            #    new_var.stop_gradient = ref_var.stop_gradient
            #    return new_var
R
update  
root 已提交
268

S
update  
sandyhouse 已提交
269 270 271 272 273 274
            #def _rename_arg(op, old_name, new_name):
            #    op_desc = op.desc
            #    if isinstance(op_desc, tuple):
            #        op_desc = op_desc[0]
            #    op_desc._rename_input(old_name, new_name)
            #    op_desc._rename_output(old_name, new_name)
R
update  
root 已提交
275

S
update  
sandyhouse 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
            #print("params_grads:", params_grads)
            #for param_name, grad_name in params_grads:
            #    if not self._shard.has_param(param_name): continue
            #    #if not main_block.has_var(grad_name): continue
            #    assert main_block.has_var(grad_name)
            #    use_fp16 = False
            #    fp16_grad_name = param_name + '.cast_fp16@GRAD'
            #    if main_block.has_var(grad_name):
            #        fp16_grad_var = main_block.vars[fp16_grad_name]
            #        use_fp16 = True
            #    grad_var = main_block.vars[grad_name]
            #    if use_fp16:
            #        cast_grad_var_name = paddle.fluid.unique_name.generate(
            #            grad_name)
            #        cast_var = _create_var(main_block, fp16_grad_var,
            #                               cast_grad_var_name)
            #        cast_var.persistable = False
            #        main_block.append_op(
            #            #index=offset + 1,
            #            type='cast',
            #            inputs={'X': grad_var},
            #            outputs={'Out': cast_var},
            #            attrs={
            #                'in_dtype': grad_var.dtype,
            #                'out_dtype': cast_var.dtype,
            #                'op_role':
            #                core.op_proto_and_checker_maker.OpRole.Backward,
            #            })
            #        #offset += 1
            #        main_block.append_op(
            #            #index=offset + 1,
            #            type='sum',
            #            inputs={'X': [fp16_grad_var, cast_var]},
            #            outputs={'Out': fp16_grad_var},
            #            attrs={
            #                'op_role':
            #                core.op_proto_and_checker_maker.OpRole.Backward,
            #                'op_role_var': op_role_var
            #            })
R
update  
root 已提交
315

S
update  
sandyhouse 已提交
316 317 318 319 320
            # for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            #     offset = index
            #     if is_backward_op(op) and (
            #             'op_role_var' in op.attr_names):
            #         op_role_var = op.all_attrs()['op_role_var']
R
update  
root 已提交
321

S
update  
sandyhouse 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
            #         if len(op_role_var) == 0:
            #             continue
            #         assert len(op_role_var) % 2 == 0
            #         offset = index
            #         for i in range(0, len(op_role_var), 2):
            #             grad_name = op_role_var[i + 1]
            #             if not main_block.has_var(grad_name): continue
            #             grad_var = main_block.vars[grad_name]
            #             if not 'cast_fp16' in grad_name:
            #                 new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
            #                 new_var = _create_var(main_block, grad_var,
            #                                            new_grad_var_name)
            #                 new_var.persistable = False
            #                 _rename_arg(op, grad_name, new_grad_var_name)
            #                 main_block._insert_op(
            #                     index=offset + 1,
            #                     type='sum',
            #                     inputs={'X': [grad_var, new_var]},
            #                     outputs={'Out': grad_var},
            #                     attrs={
            #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
            #                         'op_role_var': op_role_var
            #                     })
            #                 offset += 1
            #             if 'cast_fp16' in grad_name:
            #                 param_name = op_role_var[i]
            #                 fp32_grad_var_name = param_name + "@GRAD"
            #                 fp32_grad_var = main_block.vars[grad_name]
            #                 cast_grad_var_name = paddle.fluid.unique_name.generate(
            #                     fp32_grad_var_name)
            #                 cast_var = _create_var(main_block, grad_var,
            #                                             cast_grad_var_name)
            #                 cast_var.persistable = False
            #                 main_block._insert_op(
            #                     index=offset + 1,
            #                     type='cast',
            #                     inputs={'X': fp32_grad_var},
            #                     outputs={'Out': cast_var},
            #                     attrs={
            #                         'in_dtype': fp32_grad_var.dtype,
            #                         'out_dtype': cast_var.dtype,
            #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
            #                         # self._op_role_var_key: op_role_var
            #                     })
            #                 offset += 1
            #                 main_block._insert_op(
            #                     index=offset + 1,
            #                     type='sum',
            #                     inputs={'X': [grad_var, cast_var]},
            #                     outputs={'Out': grad_var},
            #                     attrs={
            #                         'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
            #                         'op_role_var': op_role_var})
S
update  
sandyhouse 已提交
375 376
        main_block._sync_with_cpp()

W
update  
WangXi 已提交
377
        # TODO(wangxi): add optimize offload
W
WangXi 已提交
378 379 380 381
        if self.optimize_offload:
            logging.info("Sharding with optimize offload !")
            offload_helper = OffloadHelper()
            offload_helper.offload(main_block, startup_block)
W
update  
WangXi 已提交
382

S
update  
sandyhouse 已提交
383 384 385 386 387 388
        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))
389 390 391

        # check op dependecy
        check_broadcast(main_block)
S
sandyhouse 已提交
392 393
        #check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                    self.dp_ring_id)
S
update  
sandyhouse 已提交
394
        #check_allreduce_sum(main_block, self._shard, self.dp_ring_id)
395 396 397 398 399
        self._wait()
        return optimize_ops, params_grads

    def _set_up(self, params_grads):
        # step 1: initialize nccl
400 401 402 403
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.global_rank]
404
        self._collective_helper = CollectiveHelper(self.role_maker,
405 406 407
                                                   self._nrings_sharding)
        # config sharding & dp groups
        self._init_comm()
S
update  
sandyhouse 已提交
408

S
sandyhouse 已提交
409
        # global
S
update  
sandyhouse 已提交
410
        if self._as_outer_parallelism:
J
update  
JZ-LIANG 已提交
411 412 413
            print("global_group_endpoints:", self.global_group_endpoints)
            print("global_rank:", self.global_rank)
            print("global_ring_id:", self.global_group_id)
S
update  
sandyhouse 已提交
414 415 416
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.global_group_endpoints, self.global_rank,
J
update  
JZ-LIANG 已提交
417
                self.global_group_id, False)
S
update  
sandyhouse 已提交
418 419

        if self._as_outer_parallelism:
J
update  
JZ-LIANG 已提交
420 421 422
            print("mp_group_endpoints:", self.mp_group_endpoints)
            print("mp_rank:", self.mp_rank)
            print("mp_ring_id:", self.mp_group_id)
S
update  
sandyhouse 已提交
423 424 425 426
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.mp_group_endpoints, self.mp_rank, self.mp_group_id, False)

427
        # sharding
S
sandyhouse 已提交
428 429 430
        print("sharding_group_endpoints:", self.sharding_group_endpoints)
        print("sharding_rank:", self.sharding_rank)
        print("sharding_ring_id:", self.sharding_ring_id)
431 432 433
        self._collective_helper._init_communicator(
            self._startup_program, self.current_endpoint,
            self.sharding_group_endpoints, self.sharding_rank,
S
update  
sandyhouse 已提交
434
            self.sharding_ring_id, False)
S
update  
sandyhouse 已提交
435

436 437
        # dp
        if self.hybrid_dp:
438
            self._collective_helper._init_communicator(
439
                self._startup_program, self.current_endpoint,
J
update  
JZ-LIANG 已提交
440
                self.dp_group_endpoints, self.dp_rank, self.dp_ring_id, False)
S
update  
sandyhouse 已提交
441 442
        # pp
        if self.use_pipeline:
S
sandyhouse 已提交
443 444 445
            print("pp_group_endpoints:", self.pp_group_endpoints)
            print("pp_rank:", self.pp_rank)
            print("pp_ring_id:", self.pp_ring_id)
S
update  
sandyhouse 已提交
446
            if self.schedule_mode == 0:  # GPipe
S
sandyhouse 已提交
447 448
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
S
update  
sandyhouse 已提交
449 450 451 452 453 454 455 456
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id,
                    False)
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id + 2,
                    False)
            else:
                for pair in self.pipeline_pair:
S
update  
sandyhouse 已提交
457 458 459
                    pair_key = pair[0] * 1000 + pair[1]
                    ring_id = self.pp_ring_map[pair_key]
                    print("pp pair:{}, ring_id: {}".format(pair, ring_id))
S
update  
sandyhouse 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
                    if self.pp_rank not in pair: continue
                    pp_group_endpoints = [
                        self.pp_group_endpoints[pair[0]],
                        self.pp_group_endpoints[pair[1]],
                    ]
                    if pair[0] < pair[1]:
                        start_ring_id = self.pp_ring_id + pair[1] - pair[0] - 1
                    else:
                        start_ring_id = self.pp_ring_id + 2 + pair[0] - pair[
                            1] - 1
                    pp_rank = 0 if self.pp_rank == pair[0] else 1
                    self._collective_helper._init_communicator(
                        self._startup_program, self.current_endpoint,
S
update  
sandyhouse 已提交
473
                        pp_group_endpoints, pp_rank, ring_id, False, False)
474

475 476 477 478 479
        startup_block = self._startup_program.global_block()
        startup_block._sync_with_cpp()

        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
480 481
        self._shard.setup(params_grads, self.sharding_rank,
                          self.sharding_group_size)
482 483 484 485 486 487

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
J
update  
JZ-LIANG 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501
        # only the first parallelsm group that init nccl need to be wait. 
        if self._as_outer_parallelism:
            endpoints = self.role_maker._get_trainer_endpoints()
            current_endpoint = endpoints[self.role_maker._worker_index()]
        else:
            endpoints = self.sharding_group_endpoints[:]
            current_endpoint = self.sharding_group_endpoints[self.sharding_rank]

        if self._as_outer_parallelism:
            if self.role_maker._worker_index() == 0:
                self._collective_helper._wait(current_endpoint, endpoints)
        else:
            if self.sharding_rank == 0:
                self._collective_helper._wait(current_endpoint, endpoints)
502

R
update  
root 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    # def _wait(self, ):
    #     # only the first parallelsm group that init nccl need to be wait. 
    #     if self._as_outer_parallelism:
    #         endpoints = self.role_maker._get_trainer_endpoints()
    #     else:
    #         endpoints = self.sharding_group_endpoints[:]
    #     current_endpoint = endpoints[self.role_maker._worker_index()]

    #     if self._as_outer_parallelism:
    #         if self.role_maker._worker_index() == 0:
    #             self._collective_helper._wait(current_endpoint, endpoints)
    #     else:
    #         if self.sharding_rank == 0:
    #             self._collective_helper._wait(current_endpoint, endpoints)

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
            if segment._param_mem >= self._fuse_broadcast_MB:
                segment._start_idx = op_idx + 1
                self._segments.insert(0, segment)
                segment = ProgramSegment(block)
                segment._end_idx = op_idx + 1

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
R
update  
root 已提交
557 558 559 560
            if self.use_pipeline and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
J
update  
JZ-LIANG 已提交
561 562 563 564 565 566 567 568 569 570 571 572
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
                            param, reduced_grad = op_role_var[i], op_role_var[
                                i + 1]
                            segment._allreduce_vars.append(reduced_grad)
                            #assert (
                            #    reduced_grad not in self._reduced_grads_to_param)
                            self._reduced_grads_to_param[reduced_grad] = param
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
590 591 592 593 594 595

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
596 597 598
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
S
update  
sandyhouse 已提交
599 600 601 602
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        Model_Paramllelism_ring_id = self.sharding_ring_id
        if self._as_outer_parallelism:
S
update  
sandyhouse 已提交
603
            Model_Paramllelism_ring_id = self.global_group_id
604
        FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param,
S
update  
sandyhouse 已提交
605 606
                             Model_Paramllelism_ring_id)
        gradientclip_helper = GradientClipHelper(Model_Paramllelism_ring_id)
607 608 609 610 611 612 613 614 615 616 617 618
        gradientclip_helper.prune_gradient_clip(block, self._shard)

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

619
        # prune optimizer state and param
620 621 622 623 624 625 626 627 628 629 630 631 632 633
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
S
update  
sandyhouse 已提交
634 635 636 637 638 639 640
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
672 673
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
674 675 676 677
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

        block._sync_with_cpp()
S
update  
sandyhouse 已提交
678 679 680 681 682 683 684 685
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
        block._sync_with_cpp()
686 687 688 689 690
        return

    def _add_broadcast_allreduce(self, block):
        """
        _add_broadcast_allreduce
J
update  
JZ-LIANG 已提交
691 692 693

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
694 695 696
        """
        if len(self._segments) < 1:
            return
697
        # sharding
R
update  
root 已提交
698
        if self.use_pipeline and self.pp_allreduce_in_optimize:
J
update  
JZ-LIANG 已提交
699 700 701
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

702
        if self._segments[-1]._allreduce_vars:
703 704 705 706 707 708 709
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
                insert_allreduce_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
710
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
711
                                 self.sharding_ring_id,
712
                                 self._segments[-1]._allreduce_vars)
R
update  
root 已提交
713 714 715 716 717 718 719 720 721
            # allreduce --> reduce
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False)
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, segment._end_idx, self.dp_ring_id,
                                     shard_allredue_vars)

                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)
            else:
                comm_dep_vars = allreduce_vars + [x[0] for x in broadcast_vars]
                if len(comm_dep_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, comm_dep_vars)

774 775 776 777 778 779 780 781 782 783 784 785 786
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
S
sandyhouse 已提交
787
            print("cast_ops:", cast_ops)
788 789 790
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
791 792
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
793
            # step6: add all_reduce ops
794 795 796 797 798 799 800
            # dp
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_allreduce_ops(block, segment._start_idx, self.dp_ring_id,
                                     shard_allredue_vars)
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
R
update  
root 已提交
801 802 803 804 805 806 807 808 809
            # allreduce --> reduce
            insert_reduce_ops(
                block,
                segment._start_idx,
                self.sharding_ring_id,
                allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False)
810 811 812 813

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
814 815 816
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
817
            insert_broadcast_ops(block, self._segments[0]._start_idx,
818
                                 self.sharding_ring_id,
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
859 860 861 862

    def _init_comm(self):

        if self.hybrid_dp:
S
update  
sandyhouse 已提交
863
            assert self._as_outer_parallelism == False, "hybrid dp is conflict when using sharding as outer parallelism"
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
            self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                "sharding_group_size"]
            self.sharding_ring_id = 0
            self.sharding_rank = self.global_rank % self.sharding_group_size

            self.dp_group_size = self.global_word_size // self.sharding_group_size
            self.dp_rank = self.global_rank // self.sharding_group_size
            self.dp_ring_id = self.sharding_rank + 1

            self.sharding_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx // self.sharding_group_size) == self.dp_rank
            ]
            self.dp_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx % self.sharding_group_size) == self.sharding_rank
            ]
J
update  
JZ-LIANG 已提交
881

882 883 884 885 886 887 888 889 890
            assert self.global_word_size > self.sharding_group_size, \
                "global_word_size: {} should be larger than sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.global_word_size % self.sharding_group_size == 0, \
                "global_word_size: {} should be divisible to the sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.dp_group_size *  self.sharding_group_size == self.global_word_size, \
                "global_word_size: {} should be equal to the product of sharding_group_size: {} and dp_group_size: {}".format(
                self.global_word_size,
                self.sharding_group_size,
                self.dp_group_size)
S
update  
sandyhouse 已提交
891 892 893 894 895 896 897 898 899 900
            self.pp_ring_id = -1
            self.pp_rank = -1
            self.pp_group_size = None
            self.pp_group_endpoints = None

            # sharding parallelism is the only model parallelism in the current setting
            self.mp_group_id = self.sharding_ring_id
            self.mp_rank = self.sharding_rank
            self.mp_group_size = self.sharding_group_size
            self.mp_group_endpoints = self.sharding_group_endpoints[:]
901 902 903

            logging.info("Using Sharing&DP mode !")
        else:
S
sandyhouse 已提交
904
            if self._as_outer_parallelism and not self.use_pipeline:
S
update  
sandyhouse 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
                self.sharding_ring_id = 1
                assert self.global_word_size > self._inner_parallelism_size, \
                    "global_word_size: {} should be larger than inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                assert self.global_word_size % self._inner_parallelism_size == 0, \
                    "global_word_size: {} should be divisible to the inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                self.sharding_rank = self.global_rank // self._inner_parallelism_size
                self.sharding_group_size = self.role_maker._worker_num(
                ) // self._inner_parallelism_size
                _offset = self.global_rank % self._inner_parallelism_size
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.endpoints)
                    if idx % self._inner_parallelism_size == _offset
                ]

                # the current entire model parallelism group is the combination of innert & sharding parallelism
                self.mp_group_id = 2
                self.mp_rank = self.global_rank
                self.mp_group_size = self.role_maker._worker_num()
                self.mp_group_endpoints = self.endpoints[:]
                logging.info("Using Sharing as Outer parallelism mode !")

                # print(
                #     "init the nccl comm for megatron paramllelism, this should be done in Megatron Metaoptimizer"
                # )
                # partition_idx = self.global_rank // self._inner_parallelism_size
                # magetron_endpoints = self.endpoints[
                #     partition_idx * self._inner_parallelism_size:partition_idx *
                #     self._inner_parallelism_size + self._inner_parallelism_size]
                # magetron_rank = self.global_rank % self._inner_parallelism_size

                # self._collective_helper._init_communicator(
                #     program=self._startup_program,
                #     current_endpoint=self.current_endpoint,
                #     endpoints=magetron_endpoints,
                #     rank=magetron_rank,
                #     ring_id=0,
                #     wait_port=True)
                # logging.info("megatron group size: {}".format(
                #     self._inner_parallelism_size))
                # logging.info("megatron rank: {}".format(magetron_rank))
                # logging.info("megatron endpoints: {}".format(
                #     magetron_endpoints))
            if self.use_pipeline:
S
sandyhouse 已提交
948 949 950 951 952 953 954
                if self._inner_parallelism_size == 1:
                    self.sharding_ring_id = 0
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
                    self.sharding_rank = self.global_rank % self.sharding_group_size
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
S
update  
sandyhouse 已提交
955
                    self.pp_ring_id = 20
S
sandyhouse 已提交
956 957 958 959 960 961 962 963
                    self.pp_rank = self.global_rank // (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.sharding_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx // self.sharding_group_size) == self.pp_rank
                    ]
                    self.pp_group_size = self.pipeline_nodes
                    self.pp_group_endpoints = [
S
update  
sandyhouse 已提交
964 965 966
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx % self.sharding_group_size
                            ) == self.sharding_rank
S
sandyhouse 已提交
967 968
                    ]
                else:
S
update  
sandyhouse 已提交
969
                    self.mp_group_id = 0
S
sandyhouse 已提交
970
                    self.sharding_ring_id = 1
S
update  
sandyhouse 已提交
971
                    self.pp_ring_id = 20
S
update  
sandyhouse 已提交
972 973 974 975 976 977 978 979
                    self.mp_rank = self.global_rank % self._inner_parallelism_size
                    self.mp_group = self.global_rank // self._inner_parallelism_size
                    self.mp_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if idx // self._inner_parallelism_size == self.mp_group
                    ]
                    print("megatron_group_endpoints:", self.mp_group_endpoints)
                    print("megatron_rank:", self.mp_rank)
S
sandyhouse 已提交
980 981 982
                    # self.cards_per_node = 8
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
S
update  
sandyhouse 已提交
983 984 985 986 987 988
                    self.sharding_rank = (
                        self.global_rank //
                        self._inner_parallelism_size) % self.sharding_group_size
                    self.sharding_group_id = self.global_rank // (
                        self._inner_parallelism_size * self.sharding_group_size)
                    self.megatron_rank = self.global_rank % self._inner_parallelism_size
S
sandyhouse 已提交
989
                    self.sharding_group_endpoints = [
S
update  
sandyhouse 已提交
990 991 992 993 994
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx // (self._inner_parallelism_size *
                                    self.sharding_group_size)
                            ) == self.sharding_group_id and idx %
                        self._inner_parallelism_size == self.megatron_rank
S
sandyhouse 已提交
995
                    ]
S
update  
sandyhouse 已提交
996 997
                    print("sharding_endpoint:", self.sharding_group_endpoints)
                    print("sharding_rank:", self.sharding_rank)
S
sandyhouse 已提交
998 999 1000
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
                    self.pp_rank = self.global_rank // (
S
update  
sandyhouse 已提交
1001 1002
                        self.sharding_group_size *
                        self._inner_parallelism_size) % self.pipeline_nodes
S
sandyhouse 已提交
1003
                    offset = self.sharding_group_size * self._inner_parallelism_size
S
update  
sandyhouse 已提交
1004
                    # TODO: Adjust for dp
S
sandyhouse 已提交
1005 1006 1007 1008 1009 1010 1011
                    idx_with_pp_0 = self.global_rank % (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.pp_group_endpoints = []
                    for i in range(self.pipeline_nodes):
                        self.pp_group_endpoints.append(self.endpoints[
                            idx_with_pp_0])
                        idx_with_pp_0 += offset
S
update  
sandyhouse 已提交
1012 1013
                    print("pp_group_endpoints:", self.pp_group_endpoints)
                    print("pp_rank:", self.pp_rank)
S
sandyhouse 已提交
1014 1015 1016 1017 1018

                    #self.pp_group_endpoints = [
                    #    ep for idx, ep in enumerate(self.endpoints)
                    #    if (idx % self.sharding_group_size) == self.sharding_rank
                    #]
S
update  
sandyhouse 已提交
1019 1020 1021 1022
                self.global_group_id = 3
                self.global_rank = self.global_rank
                self.global_group_size = self.role_maker._worker_num()
                self.global_group_endpoints = self.endpoints[:]
S
sandyhouse 已提交
1023
                logging.info("Using Sharing as Outer parallelism mode !")
S
update  
sandyhouse 已提交
1024 1025 1026 1027 1028 1029
                self.dp_ring_id = -1
                self.dp_rank = -1
                self.dp_group_size = None
                self.dp_group_endpoints = None

                logging.info("Using Sharing with pipeline !")
S
sandyhouse 已提交
1030 1031 1032 1033 1034
            #else:
            #    self.sharding_ring_id = 0
            #    self.sharding_rank = self.global_rank
            #    self.sharding_group_size = self.role_maker._worker_num()
            #    self.sharding_group_endpoints = self.endpoints
S
update  
sandyhouse 已提交
1035

S
sandyhouse 已提交
1036 1037 1038 1039 1040
            #    # sharding parallelism is the only model parallelism in the current setting
            #    self.mp_group_id = self.sharding_ring_id
            #    self.mp_rank = self.sharding_rank
            #    self.mp_group_size = self.sharding_group_size
            #    self.mp_group_endpoints = self.sharding_group_endpoints[:]
S
update  
sandyhouse 已提交
1041

S
sandyhouse 已提交
1042
            #    logging.info("Using Sharing alone mode !")
S
update  
sandyhouse 已提交
1043 1044 1045 1046 1047 1048

            self.dp_ring_id = -1
            self.dp_rank = -1
            self.dp_group_size = None
            self.dp_group_endpoints = None

S
sandyhouse 已提交
1049 1050 1051 1052 1053 1054 1055 1056
            #self.pp_ring_id = -1
            #self.pp_rank = -1
            #self.pp_group_size = None
            #self.pp_group_endpoints = None
            #self.dp_ring_id = -1
            #self.dp_rank = -1
            #self.dp_group_size = None
            #self.dp_group_endpoints = None
1057 1058 1059

            logging.info("Using Sharing alone mode !")

S
sandyhouse 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        #logging.info("global word size: {}".format(self.global_word_size))
        #logging.info("global rank: {}".format(self.global_rank))
        #logging.info("sharding group_size: {}".format(self.sharding_group_size))
        #logging.info("sharding rank: {}".format(self.sharding_rank))
        #logging.info("current model parallelism group_size: {}".format(
        #    self.mp_group_size))
        #logging.info("current model parallelism rank: {}".format(self.mp_rank))
        #logging.info("dp group size: {}".format(self.dp_group_size))
        #logging.info("dp rank: {}".format(self.dp_rank))
        #logging.info("current endpoint: {}".format(self.current_endpoint))
        #logging.info("global word endpoints: {}".format(self.endpoints))
        #logging.info("sharding group endpoints: {}".format(
        #    self.sharding_group_endpoints))
        #logging.info("current model parallelism group endpoints: {}".format(
        #    self.mp_group_endpoints))
        #logging.info("dp group endpoints: {}".format(self.dp_group_endpoints))
1076 1077

        return
S
update  
sandyhouse 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    def _initialization_broadcast(self, startup_prog):
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
        block = startup_prog.global_block()
        params = []
        for param in block.iter_parameters():
            params.append(param)
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})