Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c7472f16
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c7472f16
编写于
3月 09, 2021
作者:
R
root
提交者:
sandyhouse
3月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
eeca5ef6
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
192 addition
and
159 deletion
+192
-159
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
...addle/distributed/fleet/meta_optimizers/sharding/utils.py
+20
-6
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+165
-151
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+6
-2
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
100644 → 100755
浏览文件 @
c7472f16
...
...
@@ -38,6 +38,7 @@ message ShardingConfig {
optional
int32
acc_steps
=
7
[
default
=
1
];
optional
int32
schedule_mode
=
8
[
default
=
0
];
optional
int32
pp_bz
=
9
[
default
=
1
];
optional
bool
pp_allreduce_in_optimize
=
10
[
default
=
true
];
}
message
AMPConfig
{
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
浏览文件 @
c7472f16
...
...
@@ -88,7 +88,7 @@ def check_allreduce_sum(block, shard, sharding_ring_id, dp_ring_id=-1):
grad:
- 0: op that generate Var
- 1: sync_calc
- 2:
allreduce_sum_sharding
- 2:
reduce_sum_sharding (allreduce --> reduce)
- 3: sync_comm
- 4: allreuce_sum_dp (dp_grads)
- 5: sync_comm (dp_grads)
...
...
@@ -103,7 +103,7 @@ def check_allreduce_sum(block, shard, sharding_ring_id, dp_ring_id=-1):
idx_gradient_clip_allreduce
=
-
1
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
==
"c_allreduce_sum"
:
if
op
.
type
==
"c_allreduce_sum"
or
op
.
type
==
"c_reduce_sum"
:
if
op
.
all_attrs
()[
"use_calc_stream"
]
==
False
:
ring_id
=
op
.
desc
.
attr
(
"ring_id"
)
var_name
=
op
.
desc
.
input_arg_names
()[
0
]
...
...
@@ -137,11 +137,12 @@ def check_allreduce_sum(block, shard, sharding_ring_id, dp_ring_id=-1):
var_name
]
==
0
:
dp_grads_status
[
var_name
]
=
1
elif
op
.
type
==
"c_allreduce_sum"
:
elif
op
.
type
==
"c_allreduce_sum"
or
op
.
type
==
"c_reduce_sum"
:
if
op
.
all_attrs
()[
"use_calc_stream"
]
==
False
:
var_name
=
op
.
desc
.
input_arg_names
()[
0
]
ring_id
=
op
.
desc
.
attr
(
"ring_id"
)
if
ring_id
==
sharding_ring_id
:
assert
op
.
type
==
"c_reduce_sum"
,
"Grad in Sharding group should be reduce rather than allreduce"
if
var_name
in
vars_status
:
_status
=
vars_status
[
var_name
]
else
:
...
...
@@ -191,6 +192,9 @@ def check_allreduce_sum(block, shard, sharding_ring_id, dp_ring_id=-1):
raise
ValueError
(
"There should be a sync_comm op "
"after allreduce the Var: {}"
.
format
(
input_name
))
raise
ValueError
(
"The reduce output grad [{}] should NOT be be used in Non-root rank."
.
format
(
input_name
))
if
input_name
in
dp_grads_status
:
if
dp_ring_id
==
-
1
:
if
dp_grads_status
[
input_name
]
!=
3
:
...
...
@@ -352,7 +356,9 @@ def get_grad_device(grad_name, shard):
grad_name
)
base_name
=
None
# mind the traversal order
possible_suffixes
=
[
'.cast_fp16@GRAD'
,
'@GRAD'
]
possible_suffixes
=
[
'.cast_fp16@GRAD_0'
,
'.cast_fp16@GRAD'
,
'@GRAD_0'
,
'@GRAD'
]
for
suffix
in
possible_suffixes
:
if
suffix
in
grad_name
:
base_name
=
re
.
sub
(
suffix
,
''
,
grad_name
)
...
...
@@ -369,7 +375,7 @@ def insert_reduce_ops(block,
ring_id
,
reduce_vars
,
shard
,
op_role
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
):
"""
_add_allreduce_ops
...
...
@@ -389,10 +395,18 @@ def insert_reduce_ops(block,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
return
def
get_first_check_finite_and_unscale_op_idx
(
block
):
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
==
"check_finite_and_unscale"
:
return
idx
raise
ValueError
(
"check_finite_and_unscale does not exist in block"
)
def
insert_broadcast_ops
(
block
,
insert_idx
,
ring_id
,
broadcast2root
):
"""
_add_broadcast_ops
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
c7472f16
...
...
@@ -100,6 +100,8 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
schedule_mode
=
self
.
user_defined_strategy
.
sharding_configs
[
"schedule_mode"
]
self
.
pp_bz
=
self
.
user_defined_strategy
.
sharding_configs
[
"pp_bz"
]
self
.
pp_allreduce_in_optimize
=
self
.
user_defined_strategy
.
sharding_configs
[
"pp_allreduce_in_optimize"
]
if
self
.
inner_opt
is
None
:
raise
ValueError
(
...
...
@@ -179,6 +181,7 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_initialization_broadcast
(
startup_program
)
if
self
.
use_pipeline
:
# pp_optimizer._rename_gradient_var_name(main_block)
# crop ops
for
idx
,
op
in
reversed
(
list
(
enumerate
(
main_block
.
ops
))):
# if op.type == 'fill_constant' and int(op.attr('op_role')) == 16:
...
...
@@ -207,20 +210,22 @@ class ShardingOptimizer(MetaOptimizerBase):
# param_list.append(param_name)
#pp_optimizer._clear_gradients(main_block, param_list)
accumulated_grad_names
=
pp_optimizer
.
_accumulate_gradients
(
main_block
)
# accumulated_grad_names = sorted(accumulated_grad_names)
print
(
"persistable FP32 grad: "
)
print
(
accumulated_grad_names
)
first_optimize_op_index
=
get_first_check_finite_and_unscale_op_idx
(
main_block
)
insert_reduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
sharding_ring_id
,
accumulated_grad_names
,
self
.
_shard
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
)
pp_allreduce_in_optimize
=
self
.
pp_allreduce_in_optimize
)
# accumulated_grad_names = sorted(accumulated_grad_names)
if
self
.
pp_allreduce_in_optimize
:
print
(
"persistable FP32 grad: "
)
print
(
accumulated_grad_names
)
first_optimize_op_index
=
get_first_check_finite_and_unscale_op_idx
(
main_block
)
insert_reduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
sharding_ring_id
,
accumulated_grad_names
,
self
.
_shard
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
)
#if not self._shard.has_param(param_name): continue
##if not main_block.has_var(grad_name): continue
#assert main_block.has_var(grad_name)
...
...
@@ -240,130 +245,130 @@ class ShardingOptimizer(MetaOptimizerBase):
# 'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
# })
#def _create_var(block, ref_var, name):
# """
# Create a new var for block, which has the same type,
# shape and dtype as ref_var, then rename it with the
# name `name`.
# """
# new_var = block.create_var(
# name=name,
# shape=ref_var.shape,
# dtype=ref_var.dtype,
# type=ref_var.type,
# lod_level=ref_var.lod_level,
# persistable=ref_var.persistable,
# is_data=ref_var.is_data,
# need_check_feed=ref_var.desc.need_check_feed())
# new_var.stop_gradient = ref_var.stop_gradient
# return new_var
#def _rename_arg(op, old_name, new_name):
# op_desc = op.desc
# if isinstance(op_desc, tuple):
# op_desc = op_desc[0]
# op_desc._rename_input(old_name, new_name)
# op_desc._rename_output(old_name, new_name)
#print("params_grads:", params_grads)
#for param_name, grad_name in params_grads:
# if not self._shard.has_param(param_name): continue
# #if not main_block.has_var(grad_name): continue
# assert main_block.has_var(grad_name)
# use_fp16 = False
# fp16_grad_name = param_name + '.cast_fp16@GRAD'
# if main_block.has_var(grad_name):
# fp16_grad_var = main_block.vars[fp16_grad_name]
# use_fp16 = True
# grad_var = main_block.vars[grad_name]
# if use_fp16:
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# grad_name)
# cast_var = _create_var(main_block, fp16_grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block.append_op(
# #index=offset + 1,
# type='cast',
# inputs={'X': grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# })
# #offset += 1
# main_block.append_op(
# #index=offset + 1,
# type='sum',
# inputs={'X': [fp16_grad_var, cast_var]},
# outputs={'Out': fp16_grad_var},
# attrs={
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
# offset = index
# if is_backward_op(op) and (
# 'op_role_var' in op.attr_names):
# op_role_var = op.all_attrs()['op_role_var']
# if len(op_role_var) == 0:
# continue
# assert len(op_role_var) % 2 == 0
# offset = index
# for i in range(0, len(op_role_var), 2):
# grad_name = op_role_var[i + 1]
# if not main_block.has_var(grad_name): continue
# grad_var = main_block.vars[grad_name]
# if not 'cast_fp16' in grad_name:
# new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
# new_var = _create_var(main_block, grad_var,
# new_grad_var_name)
# new_var.persistable = False
# _rename_arg(op, grad_name, new_grad_var_name)
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, new_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# offset += 1
# if 'cast_fp16' in grad_name:
# param_name = op_role_var[i]
# fp32_grad_var_name = param_name + "@GRAD"
# fp32_grad_var = main_block.vars[grad_name]
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# fp32_grad_var_name)
# cast_var = _create_var(main_block, grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block._insert_op(
# index=offset + 1,
# type='cast',
# inputs={'X': fp32_grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': fp32_grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# # self._op_role_var_key: op_role_var
# })
# offset += 1
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, cast_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var})
#def _create_var(block, ref_var, name):
# """
# Create a new var for block, which has the same type,
# shape and dtype as ref_var, then rename it with the
# name `name`.
# """
# new_var = block.create_var(
# name=name,
# shape=ref_var.shape,
# dtype=ref_var.dtype,
# type=ref_var.type,
# lod_level=ref_var.lod_level,
# persistable=ref_var.persistable,
# is_data=ref_var.is_data,
# need_check_feed=ref_var.desc.need_check_feed())
# new_var.stop_gradient = ref_var.stop_gradient
# return new_var
#def _rename_arg(op, old_name, new_name):
# op_desc = op.desc
# if isinstance(op_desc, tuple):
# op_desc = op_desc[0]
# op_desc._rename_input(old_name, new_name)
# op_desc._rename_output(old_name, new_name)
#print("params_grads:", params_grads)
#for param_name, grad_name in params_grads:
# if not self._shard.has_param(param_name): continue
# #if not main_block.has_var(grad_name): continue
# assert main_block.has_var(grad_name)
# use_fp16 = False
# fp16_grad_name = param_name + '.cast_fp16@GRAD'
# if main_block.has_var(grad_name):
# fp16_grad_var = main_block.vars[fp16_grad_name]
# use_fp16 = True
# grad_var = main_block.vars[grad_name]
# if use_fp16:
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# grad_name)
# cast_var = _create_var(main_block, fp16_grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block.append_op(
# #index=offset + 1,
# type='cast',
# inputs={'X': grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# })
# #offset += 1
# main_block.append_op(
# #index=offset + 1,
# type='sum',
# inputs={'X': [fp16_grad_var, cast_var]},
# outputs={'Out': fp16_grad_var},
# attrs={
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
# offset = index
# if is_backward_op(op) and (
# 'op_role_var' in op.attr_names):
# op_role_var = op.all_attrs()['op_role_var']
# if len(op_role_var) == 0:
# continue
# assert len(op_role_var) % 2 == 0
# offset = index
# for i in range(0, len(op_role_var), 2):
# grad_name = op_role_var[i + 1]
# if not main_block.has_var(grad_name): continue
# grad_var = main_block.vars[grad_name]
# if not 'cast_fp16' in grad_name:
# new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
# new_var = _create_var(main_block, grad_var,
# new_grad_var_name)
# new_var.persistable = False
# _rename_arg(op, grad_name, new_grad_var_name)
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, new_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# offset += 1
# if 'cast_fp16' in grad_name:
# param_name = op_role_var[i]
# fp32_grad_var_name = param_name + "@GRAD"
# fp32_grad_var = main_block.vars[grad_name]
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# fp32_grad_var_name)
# cast_var = _create_var(main_block, grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block._insert_op(
# index=offset + 1,
# type='cast',
# inputs={'X': fp32_grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': fp32_grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# # self._op_role_var_key: op_role_var
# })
# offset += 1
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, cast_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var})
main_block
.
_sync_with_cpp
()
with
open
(
"start_sharding_%d"
%
self
.
role_maker
.
_worker_index
(),
...
...
@@ -540,7 +545,10 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_main_program
.
global_block
().
var
(
input_name
))
# find reduce vars
if
not
self
.
use_pipeline
:
if
self
.
use_pipeline
and
self
.
pp_allreduce_in_optimize
:
# place pipeline gradient allreduce in optimize
pass
else
:
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
...
...
@@ -678,7 +686,7 @@ class ShardingOptimizer(MetaOptimizerBase):
if
len
(
self
.
_segments
)
<
1
:
return
# sharding
if
self
.
use_pipeline
:
if
self
.
use_pipeline
and
self
.
pp_allreduce_in_optimize
:
for
idx
in
range
(
len
(
self
.
_segments
)):
assert
len
(
self
.
_segments
[
idx
].
_allreduce_vars
)
==
0
...
...
@@ -693,9 +701,15 @@ class ShardingOptimizer(MetaOptimizerBase):
insert_sync_comm_ops
(
block
,
self
.
_segments
[
-
1
].
_end_idx
,
self
.
sharding_ring_id
,
self
.
_segments
[
-
1
].
_allreduce_vars
)
insert_allreduce_ops
(
block
,
self
.
_segments
[
-
1
].
_end_idx
,
self
.
sharding_ring_id
,
self
.
_segments
[
-
1
].
_allreduce_vars
)
# allreduce --> reduce
insert_reduce_ops
(
block
,
self
.
_segments
[
-
1
].
_end_idx
,
self
.
sharding_ring_id
,
self
.
_segments
[
-
1
].
_allreduce_vars
,
self
.
_shard
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
)
for
idx
,
segment
in
reversed
(
list
(
enumerate
(
self
.
_segments
))):
allreduce_vars
=
self
.
_segments
[
...
...
@@ -775,8 +789,15 @@ class ShardingOptimizer(MetaOptimizerBase):
insert_sync_comm_ops
(
block
,
segment
.
_start_idx
,
self
.
sharding_ring_id
,
allreduce_vars
)
# sharding
insert_allreduce_ops
(
block
,
segment
.
_start_idx
,
self
.
sharding_ring_id
,
allreduce_vars
)
# allreduce --> reduce
insert_reduce_ops
(
block
,
segment
.
_start_idx
,
self
.
sharding_ring_id
,
allreduce_vars
,
self
.
_shard
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
)
block
.
_sync_with_cpp
()
...
...
@@ -829,12 +850,6 @@ class ShardingOptimizer(MetaOptimizerBase):
def
_init_comm
(
self
):
# sharding alone mode
# self.sharding_ring_id = 0
# self.sharding_rank = self.global_rank
# self.sharding_group_endpoints = self.endpoints[:]
# self.sharding_group_size = len(self.endpoints)
if
self
.
hybrid_dp
:
assert
self
.
_as_outer_parallelism
==
False
,
"hybrid dp is conflict when using sharding as outer parallelism"
self
.
sharding_group_size
=
self
.
user_defined_strategy
.
sharding_configs
[
...
...
@@ -854,7 +869,6 @@ class ShardingOptimizer(MetaOptimizerBase):
ep
for
idx
,
ep
in
enumerate
(
self
.
endpoints
)
if
(
idx
%
self
.
sharding_group_size
)
==
self
.
sharding_rank
]
# self.global_group_endpoints = self.role_maker._get_trainer_endpoints()[:]
assert
self
.
global_word_size
>
self
.
sharding_group_size
,
\
"global_word_size: {} should be larger than sharding_group_size: {}"
.
format
(
self
.
global_word_size
,
self
.
sharding_group_size
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
c7472f16
...
...
@@ -4838,7 +4838,7 @@ class PipelineOptimizer(object):
new_var
.
persistable
=
False
self
.
_rename_arg
(
op
,
grad_name
,
new_grad_var_name
)
def
_accumulate_gradients
(
self
,
block
):
def
_accumulate_gradients
(
self
,
block
,
pp_allreduce_in_optimize
=
False
):
"""
Accumulate the gradients generated in microbatch to the one in mini-batch.
"""
...
...
@@ -4875,7 +4875,11 @@ class PipelineOptimizer(object):
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
offset
=
0
param_name
=
op_role_var
[
i
]
# if not block.has_var(param_name): continue
if
not
pp_allreduce_in_optimize
:
if
not
block
.
has_var
(
param_name
):
continue
if
'@BroadCast'
in
param_name
:
param_name
=
param_name
[
0
:
param_name
.
find
(
'@BroadCast'
)]
# clear gradient
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录