Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c7f4af1d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c7f4af1d
编写于
3月 07, 2021
作者:
J
JZ-LIANG
提交者:
sandyhouse
3月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
d7dd3f51
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
113 addition
and
24 deletion
+113
-24
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
...addle/distributed/fleet/meta_optimizers/sharding/utils.py
+52
-0
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+55
-23
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+6
-1
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
100644 → 100755
浏览文件 @
c7f4af1d
...
...
@@ -275,6 +275,9 @@ def insert_sync_comm_ops(block, insert_idx, ring_id, comm_dep_vars):
"""
insert sync_comm_op for vars
"""
if
len
(
comm_dep_vars
)
==
0
:
return
0
op_role
=
get_valid_op_role
(
block
,
insert_idx
)
block
.
_insert_op_without_sync
(
insert_idx
,
...
...
@@ -329,6 +332,9 @@ def insert_allreduce_ops(block, insert_idx, ring_id, allreduce_vars):
"""
_add_allreduce_ops
"""
if
len
(
allreduce_vars
)
==
0
:
return
for
var
in
allreduce_vars
:
block
.
_insert_op_without_sync
(
insert_idx
,
...
...
@@ -341,6 +347,52 @@ def insert_allreduce_ops(block, insert_idx, ring_id, allreduce_vars):
return
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
base_name
=
None
# mind the traversal order
possible_suffixes
=
[
'.cast_fp16@GRAD'
,
'@GRAD'
]
for
suffix
in
possible_suffixes
:
if
suffix
in
grad_name
:
base_name
=
re
.
sub
(
suffix
,
''
,
grad_name
)
break
assert
base_name
in
shard
.
global_param2device
,
"[{}] should be a param variable."
.
format
(
base_name
)
return
shard
.
global_param2device
[
base_name
]
def
insert_reduce_ops
(
block
,
insert_idx
,
ring_id
,
reduce_vars
,
shard
,
op_role
,
use_calc_stream
=
False
):
"""
_add_allreduce_ops
"""
for
var
in
reduce_vars
:
root_id
=
get_grad_device
(
var
,
shard
)
assert
root_id
>=
0
,
"root id should be a positive int"
.
format
(
var
)
block
.
_insert_op_without_sync
(
insert_idx
,
type
=
'c_reduce_sum'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
'ring_id'
:
ring_id
,
'root_id'
:
root_id
,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
return
def
insert_broadcast_ops
(
block
,
insert_idx
,
ring_id
,
broadcast2root
):
"""
_add_broadcast_ops
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
c7f4af1d
...
...
@@ -16,7 +16,7 @@ from paddle.fluid import unique_name, core
import
paddle.fluid
as
fluid
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
from
paddle.distributed.fleet.meta_optimizers.common
import
is_backward_op
,
is_optimizer_op
,
is_update_op
from
paddle.distributed.fleet.meta_optimizers.common
import
is_backward_op
,
is_optimizer_op
,
is_update_op
,
OpRole
from
paddle.distributed.fleet.meta_optimizers.meta_optimizer_base
import
MetaOptimizerBase
from
paddle.distributed.fleet.meta_optimizers.sharding.shard
import
Shard
,
ProgramSegment
from
paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper
import
FP16Utils
...
...
@@ -24,6 +24,7 @@ from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper impor
from
paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper
import
GradientClipHelper
from
paddle.distributed.fleet.meta_optimizers.sharding.prune
import
ProgramDeps
from
paddle.distributed.fleet.meta_optimizers.sharding.utils
import
*
import
logging
from
functools
import
reduce
...
...
@@ -205,7 +206,16 @@ class ShardingOptimizer(MetaOptimizerBase):
# if self._shard.has_param(param_name):
# param_list.append(param_name)
#pp_optimizer._clear_gradients(main_block, param_list)
pp_optimizer
.
_accumulate_gradients
(
main_block
)
accumulated_gradient_names
,
first_optimize_op_index
=
pp_optimizer
.
_accumulate_gradients
(
main_block
)
insert_reduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
sharding_ring_id
,
accumulated_gradient_names
,
self
.
_shard
,
OpRole
.
Optimize
,
use_calc_stream
=
True
)
#if not self._shard.has_param(param_name): continue
##if not main_block.has_var(grad_name): continue
#assert main_block.has_var(grad_name)
...
...
@@ -378,19 +388,19 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_init_comm
()
# global
print
(
"global_group_endpoints:"
,
self
.
global_group_endpoints
)
print
(
"global_rank:"
,
self
.
global_rank
)
print
(
"global_ring_id:"
,
self
.
global_group_id
)
if
self
.
_as_outer_parallelism
:
print
(
"global_group_endpoints:"
,
self
.
global_group_endpoints
)
print
(
"global_rank:"
,
self
.
global_rank
)
print
(
"global_ring_id:"
,
self
.
global_group_id
)
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
self
.
global_group_endpoints
,
self
.
global_rank
,
self
.
global_group_id
,
Tru
e
)
self
.
global_group_id
,
Fals
e
)
print
(
"mp_group_endpoints:"
,
self
.
mp_group_endpoints
)
print
(
"mp_rank:"
,
self
.
mp_rank
)
print
(
"mp_ring_id:"
,
self
.
mp_group_id
)
if
self
.
_as_outer_parallelism
:
print
(
"mp_group_endpoints:"
,
self
.
mp_group_endpoints
)
print
(
"mp_rank:"
,
self
.
mp_rank
)
print
(
"mp_ring_id:"
,
self
.
mp_group_id
)
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
self
.
mp_group_endpoints
,
self
.
mp_rank
,
self
.
mp_group_id
,
False
)
...
...
@@ -408,7 +418,7 @@ class ShardingOptimizer(MetaOptimizerBase):
if
self
.
hybrid_dp
:
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
self
.
dp_group_endpoints
,
self
.
dp_rank
,
self
.
dp_ring_id
,
Tru
e
)
self
.
dp_group_endpoints
,
self
.
dp_rank
,
self
.
dp_ring_id
,
Fals
e
)
# pp
if
self
.
use_pipeline
:
print
(
"pp_group_endpoints:"
,
self
.
pp_group_endpoints
)
...
...
@@ -456,9 +466,13 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_main_program
.
global_block
())
def
_wait
(
self
,
):
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
# only the first parallelsm group that init nccl need to be wait.
if
self
.
_as_outer_parallelism
:
endpoints
=
self
.
global_group_endpoints
[:]
else
:
endpoints
=
self
.
sharding_group_endpoints
[:]
current_endpoint
=
endpoints
[
self
.
role_maker
.
_worker_index
()]
if
self
.
role_maker
.
_worker_index
()
==
0
:
if
self
.
sharding_rank
==
0
:
self
.
_collective_helper
.
_wait
(
current_endpoint
,
endpoints
)
def
_split_program
(
self
,
block
):
...
...
@@ -500,17 +514,19 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_main_program
.
global_block
().
var
(
input_name
))
# find reduce vars
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
if
len
(
op_role_var
)
!=
0
:
assert
len
(
op_role_var
)
%
2
==
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param
,
reduced_grad
=
op_role_var
[
i
],
op_role_var
[
i
+
1
]
segment
.
_allreduce_vars
.
append
(
reduced_grad
)
#assert (
# reduced_grad not in self._reduced_grads_to_param)
self
.
_reduced_grads_to_param
[
reduced_grad
]
=
param
if
not
self
.
use_pipeline
:
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
if
len
(
op_role_var
)
!=
0
:
assert
len
(
op_role_var
)
%
2
==
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param
,
reduced_grad
=
op_role_var
[
i
],
op_role_var
[
i
+
1
]
segment
.
_allreduce_vars
.
append
(
reduced_grad
)
#assert (
# reduced_grad not in self._reduced_grads_to_param)
self
.
_reduced_grads_to_param
[
reduced_grad
]
=
param
# find cast op
if
FP16Utils
.
is_fp16_cast_op
(
block
,
op
,
self
.
_params
):
...
...
@@ -629,10 +645,17 @@ class ShardingOptimizer(MetaOptimizerBase):
def
_add_broadcast_allreduce
(
self
,
block
):
"""
_add_broadcast_allreduce
if combined with pipeline(grad accumulate),
the grad allreduce should be done in optimize role
"""
if
len
(
self
.
_segments
)
<
1
:
return
# sharding
if
self
.
use_pipeline
:
for
idx
in
range
(
len
(
self
.
_segments
)):
assert
len
(
self
.
_segments
[
idx
].
_allreduce_vars
)
==
0
if
self
.
_segments
[
-
1
].
_allreduce_vars
:
shard_allredue_vars
=
self
.
_shard
.
filter_grads
(
self
.
_segments
[
-
1
]
.
_allreduce_vars
)
...
...
@@ -780,6 +803,12 @@ class ShardingOptimizer(MetaOptimizerBase):
def
_init_comm
(
self
):
# sharding alone mode
self
.
sharding_ring_id
=
0
self
.
sharding_rank
=
self
.
global_rank
self
.
sharding_group_endpoints
=
self
.
endpoints
[:]
self
.
sharding_group_size
=
len
(
self
.
endpoints
)
if
self
.
hybrid_dp
:
assert
self
.
_as_outer_parallelism
==
False
,
"hybrid dp is conflict when using sharding as outer parallelism"
self
.
sharding_group_size
=
self
.
user_defined_strategy
.
sharding_configs
[
...
...
@@ -799,6 +828,9 @@ class ShardingOptimizer(MetaOptimizerBase):
ep
for
idx
,
ep
in
enumerate
(
self
.
endpoints
)
if
(
idx
%
self
.
sharding_group_size
)
==
self
.
sharding_rank
]
self
.
global_group_endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
(
)[:]
assert
self
.
global_word_size
>
self
.
sharding_group_size
,
\
"global_word_size: {} should be larger than sharding_group_size: {}"
.
format
(
self
.
global_word_size
,
self
.
sharding_group_size
)
assert
self
.
global_word_size
%
self
.
sharding_group_size
==
0
,
\
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
c7f4af1d
...
...
@@ -4842,6 +4842,9 @@ class PipelineOptimizer(object):
"""
Accumulate the gradients generated in microbatch to the one in mini-batch.
"""
# the name of real grad vars that should be allreduce
accumulated_gradient_names
=
[]
first_optimize_op_index
=
None
accumulated_grad_names
=
[]
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
...
...
@@ -4921,6 +4924,7 @@ class PipelineOptimizer(object):
#self._op_role_var_key: op_role_var
})
#offset += 1
accumulated_gradient_names
.
append
(
real_grad_var
.
name
)
else
:
grad_name
=
op_role_var
[
i
+
1
]
# with _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
...
...
@@ -4957,6 +4961,7 @@ class PipelineOptimizer(object):
# self._op_role_var_key: op_role_var
})
offset
+=
1
accumulated_gradient_names
.
append
(
fp32_grad_var
.
name
)
#real_grad_name = grad_name[0:grad_name.find(
# '@GRAD')] + '@GRAD'
#real_grad_var = block.vars[
...
...
@@ -4997,7 +5002,7 @@ class PipelineOptimizer(object):
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
return
first_optimize_op_index
,
accumulated_grad_names
return
accumulated_gradient_names
,
first_optimize_op_index
def
_add_sub_blocks
(
self
,
main_block
,
program_list
):
main_program
=
main_block
.
program
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录