conv_op.cc 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46 47
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
48 49 50 51 52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
57

Y
Yang Yu 已提交
58
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
59
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
60
                    "channels * groups.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
62
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
63 64 65
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
67 68 69
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
70
  }
71
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
72
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
73 74
}

75 76
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
77
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
78
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
79
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
80 81
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
82
#ifdef PADDLE_WITH_CUDA
83
  if (platform::CanCUDNNBeUsed(ctx)) {
84
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
85 86
  }
#endif
87
#ifdef PADDLE_WITH_MKLDNN
88
  if (library == framework::LibraryType::kPlain &&
89
      platform::CanMKLDNNBeUsed(ctx)) {
90
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
91
    layout = framework::DataLayout::kMKLDNN;
92
  }
93
#endif
94

K
Kexin Zhao 已提交
95 96 97 98 99 100 101 102
  auto input_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Input")->type());
  auto filter_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Filter")->type());
  PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                    "input and filter data type should be consistent");

  if (input_data_type == framework::proto::VarType::FP16) {
103
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
104 105 106
                      "float16 can only be used when CUDNN is used");
  }

107 108
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
109 110
}

Y
Yu Yang 已提交
111
void Conv2DOpMaker::Make() {
K
Krzysztof Binias 已提交
112
  AddAttr<bool>("is_test", "").SetDefault(false);
C
chengduoZH 已提交
113 114
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
115 116 117 118
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
119
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
120
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
121 122
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
123 124
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
125
           "input image channels divided by the groups.");
126 127 128 129 130
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  AddInput("Scale_in",
           "(Tensor) Scale_in to be used for int8 input data. Only used with INT8.")
      .AsDispensable();
  AddInput("Scale_in_eltwise",
           "(Tensor) Scale_in_eltwise to be used for int8 eltwise input data."
           "Only used with MKL-DNN.")
      .AsDispensable();
  AddInput("Scale_weights",
           "(Tensor) Scale_weights to be used for int8 weights data."
           "Only used with MKL-DNN.")
      .AsDispensable();
  AddInput("Scale_out",
           "(Tensor) Scale_out to be used for int8 output data."
           "Only used with MKL-DNN.")
      .AsDispensable();
C
chengduoZH 已提交
146
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
147
            "(Tensor) The output tensor of convolution operator. "
148 149
            "The format of output tensor is also NCHW.")
      .Reuse("Input");
C
chengduoZH 已提交
150 151 152 153
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
154
      .SetDefault({1, 1});
C
chengduoZH 已提交
155 156 157 158
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
159 160 161
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
162
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
163 164 165 166
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
167
      .SetDefault(1);
C
chengduoZH 已提交
168
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
169 170
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
171
                            "convolution operator.")
C
chengduoZH 已提交
172
      .SetDefault({1, 1});
173 174 175 176
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
177 178 179
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
180 181
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
182 183 184 185 186
  AddAttr<bool>("fuse_eltwise",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is connected via skip connection "
                "to a previous layer.")
      .SetDefault(false);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
chengduoZH 已提交
203
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
204 205
Convolution Operator.

C
chengduoZH 已提交
206
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
207
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
208
parameters is checked in the infer-shape.
C
chengduoZH 已提交
209
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
210
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
211 212 213 214 215 216
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
217 218 219 220
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
221 222
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
223
  Output:
C
chengduoZH 已提交
224 225 226 227 228 229
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
230
)DOC");
C
chengduoZH 已提交
231 232
}

Y
Yu Yang 已提交
233
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
234 235
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
236
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
237
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
238 239 240
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
241
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
242
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
243 244
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
245 246 247
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
248 249
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
250
            "(Tensor) The output tensor of convolution operator."
251 252
            "The format of output tensor is also NCDHW.")
      .Reuse("Input");
C
chengduoZH 已提交
253 254 255 256
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
257
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
258 259 260 261
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
262 263 264
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
265
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
266 267 268 269
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
270
      .SetDefault(1);
C
chengduoZH 已提交
271
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
272 273
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
274
                            "convolution operator.")
C
chengduoZH 已提交
275
      .SetDefault({1, 1, 1});
276 277 278 279
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
280 281 282
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
fix doc  
chengduoZH 已提交
298

C
chengduoZH 已提交
299
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
300 301
Convolution3D Operator.

C
chengduoZH 已提交
302
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
303
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
304
parameters is checked in the infer-shape.
C
chengduoZH 已提交
305
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
306
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
307 308 309 310 311 312
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
313 314 315 316
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
317 318
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
319
  Output:
C
chengduoZH 已提交
320 321 322 323 324 325 326
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
327 328 329
)DOC");
}

C
chengduoZH 已提交
330 331 332 333 334 335 336 337 338 339 340
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

341 342
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
343
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
344 345 346 347
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
348
#ifdef PADDLE_WITH_CUDA
349 350
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
351 352
  }
#endif
353 354 355 356
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
357
    layout_ = framework::DataLayout::kMKLDNN;
358
  }
359
#endif
360 361 362 363 364 365

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
366 367 368 369
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
370
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
371 372
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
373 374

// depthwise convolution op
Y
Yang Yang 已提交
375
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
376 377
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
Y
Yang Yang 已提交
378
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
379 380
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
381

382 383
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
384
REGISTER_OP_CPU_KERNEL(
385
    depthwise_conv2d,
X
xzl 已提交
386 387 388 389
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
390
    depthwise_conv2d_grad,
X
xzl 已提交
391 392
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
393

C
chengduoZH 已提交
394
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
395 396 397 398 399 400
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
401 402

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
403 404 405 406 407 408
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);