test_image_classification.py 10.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import paddle
18
import paddle.fluid as fluid
19
import contextlib
20 21
import math
import sys
22 23
import numpy
import unittest
武毅 已提交
24
import os
25
import numpy as np
Q
Qiao Longfei 已提交
26 27


28
def resnet_cifar10(input, depth=32):
Q
Qiao Longfei 已提交
29
    def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
30
        tmp = fluid.layers.conv2d(
Q
Qiao Longfei 已提交
31 32 33 34 35 36
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
37
            bias_attr=False)
38
        return fluid.layers.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
39

40
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
41
        if ch_in != ch_out:
42
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
43 44 45
        else:
            return input

Q
Qiao Longfei 已提交
46 47 48
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
49
        short = shortcut(input, ch_in, ch_out, stride)
50
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
Q
Qiao Longfei 已提交
51

52 53
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
54
        for i in range(1, count):
55
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
56 57 58 59 60
        return tmp

    assert (depth - 2) % 6 == 0
    n = (depth - 2) / 6
    conv1 = conv_bn_layer(
Q
Qiao Longfei 已提交
61 62 63 64
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
65
    pool = fluid.layers.pool2d(
Q
Qiao Longfei 已提交
66
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
Q
Qiao Longfei 已提交
67 68 69
    return pool


70
def vgg16_bn_drop(input):
Q
Qiao Longfei 已提交
71
    def conv_block(input, num_filter, groups, dropouts):
72
        return fluid.nets.img_conv_group(
Q
Qiao Longfei 已提交
73 74 75 76 77 78 79 80
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
81
            pool_type='max')
Q
Qiao Longfei 已提交
82

83 84 85 86 87
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
88

89
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
90
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
91
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
92
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
93
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
Q
Qiao Longfei 已提交
94 95 96
    return fc2


武毅 已提交
97
def train(net_type, use_cuda, save_dirname, is_local):
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
115
    avg_cost = fluid.layers.mean(cost)
116 117 118
    acc = fluid.layers.accuracy(input=predict, label=label)

    # Test program 
119
    test_program = fluid.default_main_program().clone(for_test=True)
120 121

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
武毅 已提交
122
    optimize_ops, params_grads = optimizer.minimize(avg_cost)
123 124 125 126 127 128 129 130 131

    BATCH_SIZE = 128
    PASS_NUM = 1

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10(), buf_size=128 * 10),
        batch_size=BATCH_SIZE)

132 133 134
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)

135 136 137
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
                        loss_t, acc_t = exe.run(program=test_program,
                                                feed=feeder.feed(test_data),
                                                fetch_list=[avg_cost, acc])
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

                    print(
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                        format(pass_id, batch_id + 1,
                               float(avg_loss_value), float(acc_value)))

                    if acc_value > 0.01:  # Low threshold for speeding up CI
                        fluid.io.save_inference_model(save_dirname, ["pixel"],
                                                      [predict], exe)
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
        t.transpile(
            optimize_ops,
            params_grads,
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers)
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
200 201 202 203 204 205 206 207 208


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
228 229 230 231 232 233 234 235 236 237 238 239 240 241

        # Use inference_transpiler to speedup
        t = fluid.InferenceTranspiler()
        inference_transpiler_program = t.transpile(inference_program,
                                                   inference_scope, place)
        transpiler_results = exe.run(inference_transpiler_program,
                                     feed={feed_target_names[0]: tensor_img},
                                     fetch_list=fetch_targets)

        assert len(results[0]) == len(transpiler_results[0])
        for i in range(len(results[0])):
            np.testing.assert_almost_equal(results[0][i],
                                           transpiler_results[0][i])

242
        print("infer results: ", results[0])
243 244


武毅 已提交
245
def main(net_type, use_cuda, is_local=True):
246 247 248 249 250 251
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "image_classification_" + net_type + ".inference.model"

武毅 已提交
252
    train(net_type, use_cuda, save_dirname, is_local)
253
    infer(use_cuda, save_dirname)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284


class TestImageClassification(unittest.TestCase):
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()