test_image_classification.py 9.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

Q
Qiao Longfei 已提交
17
import paddle.v2 as paddle
18
import paddle.fluid as fluid
19
import contextlib
20 21
import math
import sys
22 23
import numpy
import unittest
武毅 已提交
24
import os
Q
Qiao Longfei 已提交
25 26


27
def resnet_cifar10(input, depth=32):
Q
Qiao Longfei 已提交
28
    def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
29
        tmp = fluid.layers.conv2d(
Q
Qiao Longfei 已提交
30 31 32 33 34 35
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
36
            bias_attr=False)
37
        return fluid.layers.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
38

39
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
40
        if ch_in != ch_out:
41
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
42 43 44
        else:
            return input

Q
Qiao Longfei 已提交
45 46 47
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
48
        short = shortcut(input, ch_in, ch_out, stride)
49
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
Q
Qiao Longfei 已提交
50

51 52
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
53
        for i in range(1, count):
54
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
55 56 57 58 59
        return tmp

    assert (depth - 2) % 6 == 0
    n = (depth - 2) / 6
    conv1 = conv_bn_layer(
Q
Qiao Longfei 已提交
60 61 62 63
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
64
    pool = fluid.layers.pool2d(
Q
Qiao Longfei 已提交
65
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
Q
Qiao Longfei 已提交
66 67 68
    return pool


69
def vgg16_bn_drop(input):
Q
Qiao Longfei 已提交
70
    def conv_block(input, num_filter, groups, dropouts):
71
        return fluid.nets.img_conv_group(
Q
Qiao Longfei 已提交
72 73 74 75 76 77 78 79
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
80
            pool_type='max')
Q
Qiao Longfei 已提交
81

82 83 84 85 86
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
87

88 89
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
90
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
91 92
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
Q
Qiao Longfei 已提交
93 94 95
    return fc2


武毅 已提交
96
def train(net_type, use_cuda, save_dirname, is_local):
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
114
    avg_cost = fluid.layers.mean(cost)
115 116 117 118
    acc = fluid.layers.accuracy(input=predict, label=label)

    # Test program 
    test_program = fluid.default_main_program().clone()
119 120

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
武毅 已提交
121
    optimize_ops, params_grads = optimizer.minimize(avg_cost)
122 123 124 125 126 127 128 129 130

    BATCH_SIZE = 128
    PASS_NUM = 1

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10(), buf_size=128 * 10),
        batch_size=BATCH_SIZE)

131 132 133
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)

134 135 136
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
                        loss_t, acc_t = exe.run(program=test_program,
                                                feed=feeder.feed(test_data),
                                                fetch_list=[avg_cost, acc])
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

                    print(
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                        format(pass_id, batch_id + 1,
                               float(avg_loss_value), float(acc_value)))

                    if acc_value > 0.01:  # Low threshold for speeding up CI
                        fluid.io.save_inference_model(save_dirname, ["pixel"],
                                                      [predict], exe)
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
        t.transpile(
            optimize_ops,
            params_grads,
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers)
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
199 200 201 202 203 204 205 206 207


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
        print("infer results: ", results[0])
228 229


武毅 已提交
230
def main(net_type, use_cuda, is_local=True):
231 232 233 234 235 236
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "image_classification_" + net_type + ".inference.model"

武毅 已提交
237
    train(net_type, use_cuda, save_dirname, is_local)
238
    infer(use_cuda, save_dirname)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269


class TestImageClassification(unittest.TestCase):
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()