kernel_dispatch.h 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21 22 23 24 25 26 27
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/backend_set.h"
#include "paddle/phi/api/lib/data_type_set.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/selected_rows.h"
28 29
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
30

Y
YuanRisheng 已提交
31
// TODO(chenweihang): split Key, Kernel, Factory into diff files
32
#include "paddle/phi/core/kernel_factory.h"
33 34 35 36 37

namespace paddle {
namespace experimental {

namespace detail {
38
BackendSet GetTensorBackendSet(const phi::TensorBase& t);
39
std::size_t CountLeadingZeros(uint32_t val);
40 41
}  // namespace detail

42
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
43

44
enum class KernelType {
45 46 47 48
  DENSE_TENSOR_KENREL,   // kernel for DenseTensor
  SELECTED_ROWS_KENREL,  // kernel for SelectedRows
  SPARSE_COO_KERNEL,     // kernel for SparseCooTensor
  SPARSE_CSR_KERNEL      // kernel for SparseCsrTensor
49 50
};

51 52 53 54 55 56 57
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
58
  phi::KernelKey GetHighestPriorityKernelKey() {
59
    return phi::KernelKey(static_cast<Backend>(32 - detail::CountLeadingZeros(
60 61 62
                                                        backend_set.bitset())),
                          layout,
                          dtype);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
93
  bool disable_cudnn = false;
94 95 96
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
97 98 99

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
100
  inline void AssignKernelKeySet(const phi::TensorBase& tensor) {
101 102 103 104 105 106 107 108 109
    // assign Backend
    BackendSet tensor_backend_set = detail::GetTensorBackendSet(tensor);
    key_set.backend_set = key_set.backend_set | tensor_backend_set;
    // tensor's attribute use_cudnn=False, explicitly disable cudnn kernel
    if (tensor_backend_set == BackendSet(Backend::GPU) || disable_cudnn) {
      disable_cudnn = true;
      key_set.backend_set = key_set.backend_set - BackendSet(Backend::GPUDNN);
    }
    // assign DataLayout
110 111 112
    phi::DataLayout tensor_layout = tensor.layout();
    key_set.layout =
        tensor_layout > key_set.layout ? tensor_layout : key_set.layout;
113
    // assign DataType
114 115
    key_set.dtype = tensor.dtype();
    dtype_set = dtype_set | DataTypeSet(key_set.dtype);
116 117 118 119
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
120 121
  }

122 123 124 125 126 127
  void operator()(const Tensor& x) {
    const auto* tensor = x.impl().get();
    if (tensor) {
      AssignKernelKeySet(*tensor);
    }
  }
128

129
  void operator()(const std::vector<Tensor>& x) {
130 131 132 133
    if (!x.empty()) {
      const phi::TensorBase& tensor = *x.at(0).impl();
      AssignKernelKeySet(tensor);
    }
134 135
  }

136 137
  void operator()(const paddle::optional<Tensor>& x) {
    if (x) {
138 139 140 141 142
      const phi::TensorBase& tensor = *(x.get_ptr()->impl());
      AssignKernelKeySet(tensor);
    }
  }

143 144 145 146 147 148 149
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

150 151 152 153 154 155
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
156
    if (phi::SelectedRows::classof(x.impl().get())) {
157
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
158 159 160 161
    } else if (phi::SparseCooTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_COO_KERNEL;
    } else if (phi::SparseCsrTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_CSR_KERNEL;
162 163 164 165 166 167 168 169 170 171
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

172 173 174 175 176 177 178
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

179 180 181 182 183
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

184 185 186 187 188
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

189
Backend ParseBackend(const Place& place);
190 191 192 193 194
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
195
  return static_cast<Backend>(32 -
196 197
                              detail::CountLeadingZeros(backend_set.bitset()));
}
198
Backend ParseBackendWithInputOrder(const Place& place, const Tensor& tensor);
199 200 201 202 203

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

204 205
}  // namespace experimental
}  // namespace paddle