signal.py 21.9 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import paddle

19
from .tensor.attribute import is_complex, is_floating_point
20
from .fft import fft_r2c, fft_c2r, fft_c2c
21
from .fluid.data_feeder import check_variable_and_dtype
J
Jiabin Yang 已提交
22
from .fluid.framework import _non_static_mode
23
from .fluid.layer_helper import LayerHelper
24
from paddle import _C_ops, _legacy_C_ops
C
Charles-hit 已提交
25
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

__all__ = [
    'stft',
    'istft',
]


def frame(x, frame_length, hop_length, axis=-1, name=None):
    """
    Slice the N-dimensional (where N >= 1) input into (overlapping) frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 1) Tensor
            with shape `[..., seq_length]` or `[seq_length, ...]`.
        frame_length (int): Length of the frame and `0 < frame_length <= x.shape[axis]`.
        hop_length (int): Number of steps to advance between adjacent frames
42
            and `0 < hop_length`.
43 44
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
45
            specified, the last axis is used by default.
46 47 48 49

    Returns:
        The output frames tensor with shape `[..., frame_length, num_frames]` if `axis==-1`,
            otherwise `[num_frames, frame_length, ...]` where
50

51 52 53 54 55 56 57
            `num_framse = 1 + (x.shape[axis] - frame_length) // hop_length`

    Examples:

    .. code-block:: python

        import paddle
58
        from paddle.signal import frame
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        # 1D
        x = paddle.arange(8)
        y0 = frame(x, frame_length=4, hop_length=2, axis=-1)  # [4, 3]
        # [[0, 2, 4],
        #  [1, 3, 5],
        #  [2, 4, 6],
        #  [3, 5, 7]]

        y1 = frame(x, frame_length=4, hop_length=2, axis=0)   # [3, 4]
        # [[0, 1, 2, 3],
        #  [2, 3, 4, 5],
        #  [4, 5, 6, 7]]

        # 2D
        x0 = paddle.arange(16).reshape([2, 8])
        y0 = frame(x0, frame_length=4, hop_length=2, axis=-1)  # [2, 4, 3]
        # [[[0, 2, 4],
        #   [1, 3, 5],
        #   [2, 4, 6],
        #   [3, 5, 7]],
        #
        #  [[8 , 10, 12],
        #   [9 , 11, 13],
        #   [10, 12, 14],
        #   [11, 13, 15]]]

        x1 = paddle.arange(16).reshape([8, 2])
        y1 = frame(x1, frame_length=4, hop_length=2, axis=0)   # [3, 4, 2]
        # [[[0 , 1 ],
        #   [2 , 3 ],
        #   [4 , 5 ],
        #   [6 , 7 ]],
        #
        #   [4 , 5 ],
        #   [6 , 7 ],
        #   [8 , 9 ],
        #   [10, 11]],
        #
        #   [8 , 9 ],
        #   [10, 11],
        #   [12, 13],
        #   [14, 15]]]

        # > 2D
        x0 = paddle.arange(32).reshape([2, 2, 8])
        y0 = frame(x0, frame_length=4, hop_length=2, axis=-1)  # [2, 2, 4, 3]

        x1 = paddle.arange(32).reshape([8, 2, 2])
        y1 = frame(x1, frame_length=4, hop_length=2, axis=0)   # [3, 4, 2, 2]
    """
    if axis not in [0, -1]:
        raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')

    if not isinstance(frame_length, int) or frame_length <= 0:
        raise ValueError(
            f'Unexpected frame_length: {frame_length}. It should be an positive integer.'
        )

    if not isinstance(hop_length, int) or hop_length <= 0:
        raise ValueError(
            f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
        )

J
Jiabin Yang 已提交
123
    if _non_static_mode():
124 125 126
        if frame_length > x.shape[axis]:
            raise ValueError(
                f'Attribute frame_length should be less equal than sequence length, '
127 128
                f'but got ({frame_length}) > ({x.shape[axis]}).'
            )
129 130 131

    op_type = 'frame'

C
Charles-hit 已提交
132
    if in_dygraph_mode():
133
        return _C_ops.frame(x, frame_length, hop_length, axis)
C
Charles-hit 已提交
134 135

    if _in_legacy_dygraph():
136 137 138 139 140 141 142 143
        attrs = (
            'frame_length',
            frame_length,
            'hop_length',
            hop_length,
            'axis',
            axis,
        )
144
        op = getattr(_legacy_C_ops, op_type)
145 146 147
        out = op(x, *attrs)
    else:
        check_variable_and_dtype(
148 149
            x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], op_type
        )
150 151 152
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype=dtype)
153 154 155 156 157 158 159 160 161 162
        helper.append_op(
            type=op_type,
            inputs={'X': x},
            attrs={
                'frame_length': frame_length,
                'hop_length': hop_length,
                'axis': axis,
            },
            outputs={'Out': out},
        )
163 164 165 166 167 168 169 170 171 172 173 174
    return out


def overlap_add(x, hop_length, axis=-1, name=None):
    """
    Reconstructs a tensor consisted of overlap added sequences from input frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 2) Tensor
            with shape `[..., frame_length, num_frames]` or
            `[num_frames, frame_length ...]`.
        hop_length (int): Number of steps to advance between adjacent frames and
175
            `0 < hop_length <= frame_length`.
176 177
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
178
            specified, the last axis is used by default.
179 180 181 182 183 184 185 186 187 188 189 190

    Returns:
        The output frames tensor with shape `[..., seq_length]` if `axis==-1`,
            otherwise `[seq_length, ...]` where

            `seq_length = (n_frames - 1) * hop_length + frame_length`

    Examples:

    .. code-block:: python

        import paddle
191
        from paddle.signal import overlap_add
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        # 2D
        x0 = paddle.arange(16).reshape([8, 2])
        # [[0 , 1 ],
        #  [2 , 3 ],
        #  [4 , 5 ],
        #  [6 , 7 ],
        #  [8 , 9 ],
        #  [10, 11],
        #  [12, 13],
        #  [14, 15]]
        y0 = overlap_add(x0, hop_length=2, axis=-1)  # [10]
        # [0 , 2 , 5 , 9 , 13, 17, 21, 25, 13, 15]

        x1 = paddle.arange(16).reshape([2, 8])
        # [[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ],
        #  [8 , 9 , 10, 11, 12, 13, 14, 15]]
        y1 = overlap_add(x1, hop_length=2, axis=0)   # [10]
        # [0 , 1 , 10, 12, 14, 16, 18, 20, 14, 15]

        # > 2D
        x0 = paddle.arange(32).reshape([2, 1, 8, 2])
        y0 = overlap_add(x0, hop_length=2, axis=-1)  # [2, 1, 10]

        x1 = paddle.arange(32).reshape([2, 8, 1, 2])
217
        y1 = overlap_add(x1, hop_length=2, axis=0)   # [10, 1, 2]
218 219 220 221 222 223 224 225 226 227 228
    """
    if axis not in [0, -1]:
        raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')

    if not isinstance(hop_length, int) or hop_length <= 0:
        raise ValueError(
            f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
        )

    op_type = 'overlap_add'

229
    if in_dygraph_mode():
230
        out = _C_ops.overlap_add(x, hop_length, axis)
231
    elif paddle.in_dynamic_mode():
232
        attrs = ('hop_length', hop_length, 'axis', axis)
233
        op = getattr(_legacy_C_ops, op_type)
234 235 236
        out = op(x, *attrs)
    else:
        check_variable_and_dtype(
237 238
            x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], op_type
        )
239 240 241
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype=dtype)
242 243 244 245 246 247
        helper.append_op(
            type=op_type,
            inputs={'X': x},
            attrs={'hop_length': hop_length, 'axis': axis},
            outputs={'Out': out},
        )
248 249 250
    return out


251 252 253 254 255 256 257 258 259 260 261 262
def stft(
    x,
    n_fft,
    hop_length=None,
    win_length=None,
    window=None,
    center=True,
    pad_mode='reflect',
    normalized=False,
    onesided=True,
    name=None,
):
263
    r"""
264

265 266 267 268 269 270 271 272 273 274 275 276
    Short-time Fourier transform (STFT).

    The STFT computes the discrete Fourier transforms (DFT) of short overlapping
    windows of the input using this formula:
    
    .. math::
        X_t[\omega] = \sum_{n = 0}^{N-1}%
                      \text{window}[n]\ x[t \times H + n]\ %
                      e^{-{2 \pi j \omega n}/{N}}
    
    Where:
    - :math:`t`: The :math:`t`-th input window.
277

278
    - :math:`\omega`: Frequency :math:`0 \leq \omega < \text{n\_fft}` for `onesided=False`,
279 280
      or :math:`0 \leq \omega < \lfloor \text{n\_fft} / 2 \rfloor + 1` for `onesided=True`.

281
    - :math:`N`: Value of `n_fft`.
282 283 284

    - :math:`H`: Value of `hop_length`.

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    Args:
        x (Tensor): The input data which is a 1-dimensional or 2-dimensional Tensor with
            shape `[..., seq_length]`. It can be a real-valued or a complex Tensor.
        n_fft (int): The number of input samples to perform Fourier transform.
        hop_length (int, optional): Number of steps to advance between adjacent windows
            and `0 < hop_length`. Default: `None`(treated as equal to `n_fft//4`)
        win_length (int, optional): The size of window. Default: `None`(treated as equal
            to `n_fft`)
        window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
            be center padded to length `n_fft` if `win_length < n_fft`. Default: `None`(
            treated as a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): Whether to pad `x` to make that the
            :math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. See
            `paddle.nn.functional.pad` for all padding options. Default: `"reflect"`
        normalized (bool, optional): Control whether to scale the output by `1/sqrt(n_fft)`.
            Default: `False`
        onesided (bool, optional): Control whether to return half of the Fourier transform
            output that satisfies the conjugate symmetry condition when input is a real-valued
            tensor. It can not be `True` if input is a complex tensor. Default: `True`
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
309 310 311 312
        The complex STFT output tensor with shape `[..., n_fft//2 + 1, num_frames]`
        (real-valued input and `onesided` is `True`) or `[..., n_fft, num_frames]`
        (`onesided` is `False`)

313
    Examples:
314 315 316
        .. code-block:: python
    
            import paddle
317
            from paddle.signal import stft
318 319 320 321 322 323 324 325 326 327
    
            # real-valued input
            x = paddle.randn([8, 48000], dtype=paddle.float64)
            y1 = stft(x, n_fft=512)  # [8, 257, 376]
            y2 = stft(x, n_fft=512, onesided=False)  # [8, 512, 376]
    
            # complex input
            x = paddle.randn([8, 48000], dtype=paddle.float64) + \
                    paddle.randn([8, 48000], dtype=paddle.float64)*1j  # [8, 48000] complex128
            y1 = stft(x, n_fft=512, center=False, onesided=False)  # [8, 512, 372]
328

329
    """
330 331 332
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'stft'
    )
333 334

    x_rank = len(x.shape)
335 336 337 338
    assert x_rank in [
        1,
        2,
    ], f'x should be a 1D or 2D real tensor, but got rank of x is {x_rank}'
339 340 341 342 343 344 345

    if x_rank == 1:  # (batch, seq_length)
        x = x.unsqueeze(0)

    if hop_length is None:
        hop_length = int(n_fft // 4)

346
    assert hop_length > 0, f'hop_length should be > 0, but got {hop_length}.'
347 348 349 350

    if win_length is None:
        win_length = n_fft

J
Jiabin Yang 已提交
351
    if _non_static_mode():
352 353 354
        assert (
            0 < n_fft <= x.shape[-1]
        ), f'n_fft should be in (0, seq_length({x.shape[-1]})], but got {n_fft}.'
355

356 357 358
    assert (
        0 < win_length <= n_fft
    ), f'win_length should be in (0, n_fft({n_fft})], but got {win_length}.'
359 360

    if window is not None:
361 362 363
        assert (
            len(window.shape) == 1 and len(window) == win_length
        ), f'expected a 1D window tensor of size equal to win_length({win_length}), but got window with shape {window.shape}.'
364
    else:
365
        window = paddle.ones(shape=(win_length,), dtype=x.dtype)
366 367 368 369

    if win_length < n_fft:
        pad_left = (n_fft - win_length) // 2
        pad_right = n_fft - win_length - pad_left
370 371 372
        window = paddle.nn.functional.pad(
            window, pad=[pad_left, pad_right], mode='constant'
        )
373 374

    if center:
375 376 377 378 379 380
        assert pad_mode in [
            'constant',
            'reflect',
        ], 'pad_mode should be "reflect" or "constant", but got "{}".'.format(
            pad_mode
        )
381 382 383

        pad_length = n_fft // 2
        # FIXME: Input `x` can be a complex tensor but pad does not supprt complex input.
384 385 386 387 388 389
        x = paddle.nn.functional.pad(
            x.unsqueeze(-1),
            pad=[pad_length, pad_length],
            mode=pad_mode,
            data_format="NLC",
        ).squeeze(-1)
390 391 392

    x_frames = frame(x=x, frame_length=n_fft, hop_length=hop_length, axis=-1)
    x_frames = x_frames.transpose(
393 394
        perm=[0, 2, 1]
    )  # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
395
    x_frames = paddle.multiply(x_frames, window)
396 397 398

    norm = 'ortho' if normalized else 'backward'
    if is_complex(x_frames):
399 400 401
        assert (
            not onesided
        ), 'onesided should be False when input or window is a complex Tensor.'
402 403

    if not is_complex(x):
404 405 406 407 408 409 410 411 412
        out = fft_r2c(
            x=x_frames,
            n=None,
            axis=-1,
            norm=norm,
            forward=True,
            onesided=onesided,
            name=name,
        )
413
    else:
414 415 416
        out = fft_c2c(
            x=x_frames, n=None, axis=-1, norm=norm, forward=True, name=name
        )
417 418 419 420 421 422 423 424 425

    out = out.transpose(perm=[0, 2, 1])  # (batch, n_fft, num_frames)

    if x_rank == 1:
        out.squeeze_(0)

    return out


426 427 428 429 430 431 432 433 434 435 436 437 438
def istft(
    x,
    n_fft,
    hop_length=None,
    win_length=None,
    window=None,
    center=True,
    normalized=False,
    onesided=True,
    length=None,
    return_complex=False,
    name=None,
):
439
    r"""
440 441 442
    Inverse short-time Fourier transform (ISTFT).

    Reconstruct time-domain signal from the giving complex input and window tensor when
443
        nonzero overlap-add (NOLA) condition is met:
444 445 446 447 448 449 450 451 452 453

    .. math::
        \sum_{t = -\infty}^{\infty}%
            \text{window}^2[n - t \times H]\ \neq \ 0, \ \text{for } all \ n

    Where:
    - :math:`t`: The :math:`t`-th input window.
    - :math:`N`: Value of `n_fft`.
    - :math:`H`: Value of `hop_length`.

454
    Result of `istft` expected to be the inverse of `paddle.signal.stft`, but it is
455 456 457 458 459 460 461
        not guaranteed to reconstruct a exactly realizible time-domain signal from a STFT
        complex tensor which has been modified (via masking or otherwise). Therefore, `istft`
        gives the [Griffin-Lim optimal estimate](https://ieeexplore.ieee.org/document/1164317)
        (optimal in a least-squares sense) for the corresponding signal.

    Args:
        x (Tensor): The input data which is a 2-dimensional or 3-dimensional **complesx**
462
            Tensor with shape `[..., n_fft, num_frames]`.
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        n_fft (int): The size of Fourier transform.
        hop_length (int, optional): Number of steps to advance between adjacent windows
            from time-domain signal and `0 < hop_length < win_length`. Default: `None`(
            treated as equal to `n_fft//4`)
        win_length (int, optional): The size of window. Default: `None`(treated as equal
            to `n_fft`)
        window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
            be center padded to length `n_fft` if `win_length < n_fft`. It should be a
            real-valued tensor if `return_complex` is False. Default: `None`(treated as
            a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): It means that whether the time-domain signal has been
            center padded. Default: `True`.
        normalized (bool, optional): Control whether to scale the output by `1/sqrt(n_fft)`.
            Default: `False`
        onesided (bool, optional): It means that whether the input STFT tensor is a half
            of the conjugate symmetry STFT tensor transformed from a real-valued signal
            and `istft` will return a real-valued tensor when it is set to `True`.
            Default: `True`.
        length (int, optional): Specify the length of time-domain signal. Default: `None`(
482
            treated as the whole length of signal).
483 484
        return_complex (bool, optional): It means that whether the time-domain signal is
            real-valued. If `return_complex` is set to `True`, `onesided` should be set to
485
            `False` cause the output is complex.
486 487 488 489 490 491 492
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor of least squares estimation of the reconstructed signal(s) with shape
            `[..., seq_length]`

493
    Examples:
494 495 496 497
        .. code-block:: python

            import numpy as np
            import paddle
498
            from paddle.signal import stft, istft
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

            paddle.seed(0)

            # STFT
            x = paddle.randn([8, 48000], dtype=paddle.float64)
            y = stft(x, n_fft=512)  # [8, 257, 376]

            # ISTFT
            x_ = istft(y, n_fft=512)  # [8, 48000]

            np.allclose(x, x_)  # True
    """
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'istft')

    x_rank = len(x.shape)
514 515 516 517 518 519
    assert x_rank in [
        2,
        3,
    ], 'x should be a 2D or 3D complex tensor, but got rank of x is {}'.format(
        x_rank
    )
520 521 522 523 524 525 526 527 528 529 530

    if x_rank == 2:  # (batch, n_fft, n_frames)
        x = x.unsqueeze(0)

    if hop_length is None:
        hop_length = int(n_fft // 4)

    if win_length is None:
        win_length = n_fft

    # Assure no gaps between frames.
531 532 533 534 535 536 537 538 539 540 541
    assert (
        0 < hop_length <= win_length
    ), 'hop_length should be in (0, win_length({})], but got {}.'.format(
        win_length, hop_length
    )

    assert (
        0 < win_length <= n_fft
    ), 'win_length should be in (0, n_fft({})], but got {}.'.format(
        n_fft, win_length
    )
542 543 544 545

    n_frames = x.shape[-1]
    fft_size = x.shape[-2]

J
Jiabin Yang 已提交
546
    if _non_static_mode():
547
        if onesided:
548 549 550 551 552
            assert (
                fft_size == n_fft // 2 + 1
            ), 'fft_size should be equal to n_fft // 2 + 1({}) when onesided is True, but got {}.'.format(
                n_fft // 2 + 1, fft_size
            )
553
        else:
554 555 556 557 558
            assert (
                fft_size == n_fft
            ), 'fft_size should be equal to n_fft({}) when onesided is False, but got {}.'.format(
                n_fft, fft_size
            )
559 560

    if window is not None:
561 562 563 564 565
        assert (
            len(window.shape) == 1 and len(window) == win_length
        ), 'expected a 1D window tensor of size equal to win_length({}), but got window with shape {}.'.format(
            win_length, window.shape
        )
566
    else:
567 568 569 570 571 572
        window_dtype = (
            paddle.float32
            if x.dtype in [paddle.float32, paddle.complex64]
            else paddle.float64
        )
        window = paddle.ones(shape=(win_length,), dtype=window_dtype)
573 574 575 576 577

    if win_length < n_fft:
        pad_left = (n_fft - win_length) // 2
        pad_right = n_fft - win_length - pad_left
        # FIXME: Input `window` can be a complex tensor but pad does not supprt complex input.
578 579 580
        window = paddle.nn.functional.pad(
            window, pad=[pad_left, pad_right], mode='constant'
        )
581 582

    x = x.transpose(
583 584
        perm=[0, 2, 1]
    )  # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
585 586 587
    norm = 'ortho' if normalized else 'backward'

    if return_complex:
588 589 590
        assert (
            not onesided
        ), 'onesided should be False when input(output of istft) or window is a complex Tensor.'
591 592 593

        out = fft_c2c(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)
    else:
594 595 596
        assert not is_complex(
            window
        ), 'Data type of window should not be complex when return_complex is False.'
597 598

        if onesided is False:
599
            x = x[:, :, : n_fft // 2 + 1]
600 601
        out = fft_c2r(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)

602
    out = paddle.multiply(out, window).transpose(
603 604 605 606 607
        perm=[0, 2, 1]
    )  # (batch, n_fft, num_frames)
    out = overlap_add(
        x=out, hop_length=hop_length, axis=-1
    )  # (batch, seq_length)
608 609 610

    window_envelop = overlap_add(
        x=paddle.tile(
611
            x=paddle.multiply(window, window).unsqueeze(0),
612 613 614 615
            repeat_times=[n_frames, 1],
        ).transpose(
            perm=[1, 0]
        ),  # (n_fft, num_frames)
616
        hop_length=hop_length,
617 618
        axis=-1,
    )  # (seq_length, )
619 620 621

    if length is None:
        if center:
622 623
            out = out[:, (n_fft // 2) : -(n_fft // 2)]
            window_envelop = window_envelop[(n_fft // 2) : -(n_fft // 2)]
624 625 626 627 628 629
    else:
        if center:
            start = n_fft // 2
        else:
            start = 0

630 631
        out = out[:, start : start + length]
        window_envelop = window_envelop[start : start + length]
632 633

    # Check whether the Nonzero Overlap Add (NOLA) constraint is met.
J
Jiabin Yang 已提交
634
    if _non_static_mode() and window_envelop.abs().min().item() < 1e-11:
635 636 637 638 639 640 641 642 643 644
        raise ValueError(
            'Abort istft because Nonzero Overlap Add (NOLA) condition failed. For more information about NOLA constraint please see `scipy.signal.check_NOLA`(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html).'
        )

    out = out / window_envelop

    if x_rank == 2:
        out.squeeze_(0)

    return out