fft.py 70.9 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import Sequence
16

17
import numpy as np
18

19
import paddle
20

21
from . import _C_ops, _legacy_C_ops
22
from .fluid.data_feeder import check_variable_and_dtype
23
from .fluid.framework import _in_legacy_dygraph, in_dygraph_mode
24
from .fluid.layer_helper import LayerHelper
25 26
from .tensor.attribute import is_floating_point, is_integer
from .tensor.creation import _complex_to_real_dtype, _real_to_complex_dtype
27 28

__all__ = [
Z
zhiboniu 已提交
29 30 31 32 33 34
    'fft',
    'ifft',
    'rfft',
    'irfft',
    'hfft',
    'ihfft',
35 36 37 38 39
    'fft2',
    'ifft2',
    'rfft2',
    'irfft2',
    'hfft2',
Z
zhiboniu 已提交
40
    'ihfft2',
41 42 43 44 45
    'fftn',
    'ifftn',
    'rfftn',
    'irfftn',
    'hfftn',
Z
zhiboniu 已提交
46 47 48 49
    'ihfftn',
    'fftfreq',
    'rfftfreq',
    'fftshift',
50
    'ifftshift',
Z
zhiboniu 已提交
51
]
52 53 54 55 56


def _check_normalization(norm):
    if norm not in ['forward', 'backward', 'ortho']:
        raise ValueError(
57 58 59 60
            "Unexpected norm: {}. Norm should be forward, backward or ortho".format(
                norm
            )
        )
61 62 63 64 65


def _check_fft_n(n):
    if not isinstance(n, int):
        raise ValueError(
66 67
            "Invalid FFT argument n({}), it shoule be an integer.".format(n)
        )
68 69
    if n <= 0:
        raise ValueError(
70 71
            "Invalid FFT argument n({}), it should be positive.".format(n)
        )
72 73 74 75 76 77


def _check_fft_shape(x, s):
    ndim = x.ndim
    if not isinstance(s, Sequence):
        raise ValueError(
78 79
            "Invaid FFT argument s({}), it should be a sequence of integers."
        )
80 81 82 83

    if len(s) > ndim:
        raise ValueError(
            "Length of FFT argument s should not be larger than the rank of input. "
84 85
            "Received s: {}, rank of x: {}".format(s, ndim)
        )
86 87
    for size in s:
        if not isinstance(size, int) or size <= 0:
88 89 90
            raise ValueError(
                "FFT sizes {} contains invalid value ({})".format(s, size)
            )
91 92 93 94 95 96


def _check_fft_axis(x, axis):
    ndim = x.ndim
    if not isinstance(axis, int):
        raise ValueError(
97 98
            "Invalid FFT axis ({}), it shoule be an integer.".format(axis)
        )
99 100 101
    if axis < -ndim or axis >= ndim:
        raise ValueError(
            "Invalid FFT axis ({}), it should be in range [-{}, {})".format(
102 103 104
                axis, ndim, ndim
            )
        )
105 106 107 108 109 110


def _check_fft_axes(x, axes):
    ndim = x.ndim
    if not isinstance(axes, Sequence):
        raise ValueError(
111 112 113 114
            "Invalid FFT axes ({}), it should be a sequence of integers.".format(
                axes
            )
        )
115 116 117
    if len(axes) > ndim:
        raise ValueError(
            "Length of fft axes should not be larger than the rank of input. "
118 119
            "Received, len of axes: {}, rank of x: {}".format(len(axes), ndim)
        )
120 121 122
    for axis in axes:
        if not isinstance(axis, int) or axis < -ndim or axis >= ndim:
            raise ValueError(
123 124 125 126
                "FFT axes {} contains invalid value ({}), it should be in range [-{}, {})".format(
                    axes, axis, ndim, ndim
                )
            )
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147


def _resize_fft_input(x, s, axes):
    if len(s) != len(axes):
        raise ValueError("length of `s` should equals length of `axes`.")
    shape = x.shape
    ndim = x.ndim

    axes_to_pad = []
    paddings = []
    axes_to_slice = []
    slices = []
    for i, axis in enumerate(axes):
        if shape[axis] < s[i]:
            axes_to_pad.append(axis)
            paddings.append(s[i] - shape[axis])
        elif shape[axis] > s[i]:
            axes_to_slice.append(axis)
            slices.append((0, s[i]))

    if axes_to_slice:
148 149 150 151 152 153
        x = paddle.slice(
            x,
            axes_to_slice,
            starts=[item[0] for item in slices],
            ends=[item[1] for item in slices],
        )
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    if axes_to_pad:
        padding_widths = [0] * (2 * ndim)
        for axis, pad in zip(axes_to_pad, paddings):
            padding_widths[2 * axis + 1] = pad
        x = paddle.nn.functional.pad(x, padding_widths)
    return x


def _normalize_axes(x, axes):
    ndim = x.ndim
    return [item if item >= 0 else (item + ndim) for item in axes]


def _check_at_least_ndim(x, rank):
    if x.ndim < rank:
169 170 171
        raise ValueError(
            "The rank of the input ({}) should >= {}".format(x.ndim, rank)
        )
172 173 174 175 176 177 178


# public APIs 1d
def fft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Calculate one-dimensional discrete Fourier transform.

179
    This function uses the efficient fast Fourier transform (FFT) algorithm [1] to
180 181 182 183
    calculate the 1-D * n * point discrete Fourier transform (DFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
184 185 186
        n (int, optional): The length of the output transform axis. If `n` is less than
            the length input, the input will be cropped. If larger, the input is filled
            with zeros. If `n` is not given, the input length along the axis specified
187
            by `axis` is used.
188 189
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
190
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
191
            pair and what normalization factor to use. The parameter value must be one
192
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
193 194
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
195
            scaled by ``1/sqrt(n)``.
196
        name (str, optional): The default value is None.  Normally there is no need for user to set
197 198 199
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
200
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated
201
        by `axis`, or the last one if `axis` is not specified.
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            fft_xp = paddle.fft.fft(xp).numpy()
            print(fft_xp)
            #  [1.+1.25396034e+00j 1.+4.38128627e+00j 1.-4.38128627e+00j
            #   1.-1.25396034e+00j 1.-4.81574619e-01j 1.+8.88178420e-16j
            #   1.+4.81574619e-01j]


    """
220
    if is_integer(x) or is_floating_point(x):
221 222 223
        return fft_r2c(
            x, n, axis, norm, forward=True, onesided=False, name=name
        )
224 225 226 227 228 229 230 231
    else:
        return fft_c2c(x, n, axis, norm, forward=True, name=name)


def ifft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the 1-D inverse discrete Fourier Transform.

232
    This function computes the inverse of the 1-D *n*-point discrete Fourier transform
233 234 235 236 237 238 239 240 241 242 243 244
    computed by `fft`.  In other words, ``ifft(fft(x)) == x`` to within numerical accuracy.

    The input should be ordered in the same way as is returned by `fft`,
    i.e.,

    * ``x[0]`` should contain the zero frequency term,
    * ``x[1:n//2]`` should contain the positive-frequency terms,
    * ``x[n//2 + 1:]`` should contain the negative-frequency terms, in
      increasing order starting from the most negative frequency.

    For an even number of input points, ``x[n//2]`` represents the sum of
    the values at the positive and negative Nyquist frequencies, as the two
245
    are aliased together.
246 247 248

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
249 250 251
        n (int, optional): The length of the output transform axis. If `n` is less than
            the length input, the input will be cropped. If larger, the input is filled
            with zeros. If `n` is not given, the input length along the axis specified
252
            by `axis` is used.
253 254
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
255
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
256
            pair and what normalization factor to use. The parameter value must be one
257
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
258 259
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
260
            scaled by ``1/sqrt(n)``.
261
        name (str, optional): The default value is None.  Normally there is no need for user to set
262
            this property. For more information, please refer to :ref:`api_guide_Name`.
263

264
    Returns:
265
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        by `axis`, or the last one if `axis` is not specified.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            ifft_xp = paddle.fft.ifft(xp).numpy()
            print(ifft_xp)
            #  [0.14285714+1.79137191e-01j 0.14285714+6.87963741e-02j
            #   0.14285714+1.26882631e-16j 0.14285714-6.87963741e-02j
            #   0.14285714-1.79137191e-01j 0.14285714-6.25898038e-01j
            #   0.14285714+6.25898038e-01j]

    """
285
    if is_integer(x) or is_floating_point(x):
286 287 288
        return fft_r2c(
            x, n, axis, norm, forward=False, onesided=False, name=name
        )
289 290 291 292 293 294 295 296 297 298 299 300 301
    else:
        return fft_c2c(x, n, axis, norm, forward=False, name=name)


def rfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The one dimensional FFT for real input.

    This function computes the one dimensional *n*-point discrete Fourier
    Transform (DFT) of a real-valued tensor by means of an efficient algorithm
    called the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
302 303
    Hermitian-symmetric. This function does not compute the negative frequency
    terms, and the length of the transformed axis of the output is therefore
304 305 306
    ``n//2 + 1``.

    Args:
307 308 309 310 311
        x(Tensor) : Real-valued input tensor
        n(int, optional): Number of points along transformation axis in the
            input to use. If `n` is smaller than the length of the input, the
            input is cropped. If it is larger, the input is padded with zeros.
            If `n` is not given, the length of the input along the axis
312
            specified by `axis` is used.
313
        axis(int, optional): Axis over which to compute the FFT. Default value
314
            is last axis.
315 316 317
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward  pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
318
            default value is "backward".
319

320 321 322
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
323

324
            Where ``n`` is the multiplication of each element in  ``s`` .
325 326 327
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
328 329 330 331 332

    Returns:
        out(Tensor) : complex tensor

    Examples:
333

334
    .. code-block:: python
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349
        import paddle

        x = paddle.to_tensor([0.0, 1.0, 0.0, 0.0])
        print(paddle.fft.rfft(x))
        # Tensor(shape=[3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [ (1+0j), -1j    , (-1+0j)])
    """
    return fft_r2c(x, n, axis, norm, forward=True, onesided=True, name=name)


def irfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Computes the inverse of `rfft`.

350 351
    This function calculates the inverse of the one-dimensional *n* point discrete
    Fourier transform of the actual input calculated by "rfft". In other words,
352 353
    ``irfft(rfft(a),len(a)) == a`` is within the numerical accuracy range.

354 355 356 357
    The input shall be in the form of "rfft", i.e. the actual zero frequency term,
    followed by the complex positive frequency term, in the order of increasing frequency.
    Because the discrete Fourier transform of the actual input is Hermite symmetric,
    the negative frequency term is regarded as the complex conjugate term of the corresponding
358 359 360 361 362
    positive frequency term.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
363 364 365
            points, ``n//2 + 1``input points are necessary. If the length of the input tensor is greater
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given,
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified
366
            along the ` axis'.
367 368
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
369
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
370
            pair and what normalization factor to use. The parameter value must be one
371
            of "forward" or "backward" or "ortho". Default is "backward".
372 373
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
374 375

    Returns:
376 377 378
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis.
379 380
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1``
        in some cases.
381

382 383 384 385 386 387
    Examples:

        .. code-block:: python

            import paddle

388 389 390 391 392
            x = paddle.to_tensor([1, -1j, -1])
            irfft_x = paddle.fft.irfft(x)
            print(irfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 1., 0., 0.])
393 394 395 396 397 398 399 400 401 402 403 404
    """
    return fft_c2r(x, n, axis, norm, forward=False, name=name)


def hfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the FFT of a signal that has Hermitian symmetry, a real
    spectrum.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
405 406 407
            points, ``n//2 + 1`` input points are necessary. If the length of the input tensor is greater
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given,
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified
408
            along the ` axis'.
409 410
        axis (int,optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
411
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
412
            pair and what normalization factor to use. The parameter value must be one
413
            of "forward" or "backward" or "ortho". Default is "backward".
414 415
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
416 417

    Returns:
418 419 420 421
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis.
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1`` in
422
        some cases.
423

424 425 426 427 428 429
    Examples:

        .. code-block:: python

            import paddle

430 431 432 433 434
            x = paddle.to_tensor([1, -1j, -1])
            hfft_x = paddle.fft.hfft(x)
            print(hfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 0., 0., 4.])
435 436 437 438 439 440 441 442 443
    """

    return fft_c2r(x, n, axis, norm, forward=True, name=name)


def ihfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The inverse FFT of a signal that has Hermitian symmetry.

444 445
    This function computes the one dimensional *n*-point inverse FFT of a signal
    that has Hermitian symmetry by means of an efficient algorithm called
446 447 448
    the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
449 450
    Hermitian-symmetric. This function does not compute the negative frequency
    terms, and the length of the transformed axis of the output is therefore
451 452 453 454
    ``n//2 + 1``.

    Args:
        x(Tensor): Input tensor.
455 456 457 458
        n(int, optional): The number of points along transformation axis in the
            input to use.  If `n` is smaller than the length of the input, the
            input is cropped.  If it is larger, the input is padded with zeros.
            If `n` is not given, the length of the input along the axis
459 460 461
            specified by `axis` is used.
        axis(int, optional) : Axis over which to compute the inverse FFT. If not
            given, the last axis is used.
462 463 464
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
465
            default value is "backward".
466 467 468
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
469 470 471 472 473

    Returns:
        out(Tensor) : complex tensor.

    Examples:
474

475
    .. code-block:: python
476 477

        import paddle
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])

    """
    return fft_r2c(x, n, axis, norm, forward=False, onesided=True, name=name)


# public APIs nd
def fftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D discrete Fourier Transform.

496
    This function calculates the n-D discrete Fourier transform on any number of axes
497 498 499 500 501 502 503 504 505 506 507 508
    in the M-D array by fast Fourier transform (FFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
509
            axes are used, or all axes if `s` is also not specified.
510
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
511
            pair and what normalization factor to use. The parameter value must be one
512
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
513 514
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
515
            scaled by ``1/sqrt(n)``.
516
        name (str, optional): The default value is None.  Normally there is no need for user to set
517 518 519
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
520
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by
521
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
522

523 524 525 526 527 528
    Examples:

        .. code-block:: python

            import paddle

529 530 531 532
            arr = paddle.arange(4, dtype="float64")
            x = paddle.meshgrid(arr, arr, arr)[1]

            fftn_xp = paddle.fft.fftn(x, axes=(1, 2))
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
            print(fftn_xp)
            # Tensor(shape=[4, 4, 4], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
            #        [[[(24+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+8j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8-8j),  0j    ,  0j    ,  -0j   ]],

            #         [[(24+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+8j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8-8j),  0j    ,  0j    ,  -0j   ]],

            #         [[(24+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+8j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8-8j),  0j    ,  0j    ,  -0j   ]],

            #         [[(24+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+8j),  0j    ,  0j    ,  -0j   ],
            #          [(-8+0j),  0j    ,  0j    ,  -0j   ],
            #          [(-8-8j),  0j    ,  0j    ,  -0j   ]]])
554
    """
555
    if is_integer(x) or is_floating_point(x):
556 557 558
        return fftn_r2c(
            x, s, axes, norm, forward=True, onesided=False, name=name
        )
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    else:
        return fftn_c2c(x, s, axes, norm, forward=True, name=name)


def ifftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D inverse discrete Fourier Transform.

    This function computes the inverse of the N-D discrete
    Fourier Transform over any number of axes in an M-D array by
    means of the Fast Fourier Transform (FFT).  In other words,
    ``ifftn(fftn(x)) == x`` to within numerical accuracy.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fftn`, i.e., it should have the term for zero frequency
    in all axes in the low-order corner, the positive frequency terms in the
    first half of all axes, the term for the Nyquist frequency in the middle
    of all axes and the negative frequency terms in the second half of all
    axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
589
            axes are used, or all axes if `s` is also not specified.
590
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
591
            pair and what normalization factor to use. The parameter value must be one
592
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
593 594
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
595
            scaled by ``1/sqrt(n)``.
596
        name (str, optional): The default value is None.  Normally there is no need for user to set
597
            this property. For more information, please refer to :ref:`api_guide_Name`.
598

599
    Returns:
600
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by
601
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
602

603 604 605 606 607 608
    Examples:

        .. code-block:: python

            import paddle

609 610 611 612 613 614 615 616 617 618 619 620 621
            x = paddle.eye(3)
            ifftn_x = paddle.fft.ifftn(x, axes=(1,))
            print(ifftn_x)
            # Tensor(shape=[3, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[ (0.3333333432674408+0j)                  ,
            #           (0.3333333432674408-0j)                  ,
            #           (0.3333333432674408+0j)                  ],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204+0.28867512941360474j),
            #          (-0.1666666716337204-0.28867512941360474j)],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204-0.28867512941360474j),
            #          (-0.1666666716337204+0.28867512941360474j)]])
622
    """
623
    if is_integer(x) or is_floating_point(x):
624 625 626
        return fftn_r2c(
            x, s, axes, norm, forward=False, onesided=False, name=name
        )
627 628 629 630 631 632
    else:
        return fftn_c2c(x, s, axes, norm, forward=False, name=name)


def rfftn(x, s=None, axes=None, norm="backward", name=None):
    """
U
ustiniankw 已提交
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    The N dimensional FFT for real input.

    This function computes the N-dimensional discrete Fourier Transform over
    any number of axes in an M-dimensional real array by means of the Fast
    Fourier Transform (FFT).  By default, all axes are transformed, with the
    real transform performed over the last axis, while the remaining
    transforms are complex.

    The transform for real input is performed over the last transformation
    axis, as by `rfft`, then the transform over the remaining axes is
    performed as by `fftn`.  The order of the output is as for `rfft` for the
    final transformation axis, and as for `fftn` for the remaining
    transformation axes.

    Args:
        x(Tensor) : Input tensor, taken to be real.
650 651 652 653 654 655
        s(Sequence[int], optional) : Shape to use from the exec fft. The final element of
            `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining
            axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if
            the given shape is smaller than that of the input, the input is
            cropped.  If it is larger, the input is padded with zeros. if `s` is
            not given, the shape of the input along the axes specified by `axes`
656
            is used.
657 658
        axes(Sequence[int], optional) : Axes over which to compute the FFT.  If not given,
            the last ``len(s)`` axes are used, or all axes if `s` is also not
659
            specified.
660 661 662 663
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
            default value is "backward". The details of
664
            three operations are shown below:
665 666

                - "backward": The factor of forward direction and backward direction are ``1``
U
ustiniankw 已提交
667
                  and ``1/n`` respectively;
668
                - "forward": The factor of forward direction and backward direction are ``1/n``
U
ustiniankw 已提交
669
                  and ``1`` respectively;
670
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
671

672
            Where ``n`` is the multiplication of each element in  ``s`` .
673 674 675
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
676 677

    Returns:
U
ustiniankw 已提交
678
        out(Tensor), complex tensor
679 680

    Examples:
U
ustiniankw 已提交
681
        .. code-block:: python
682

U
ustiniankw 已提交
683
            import paddle
684

U
ustiniankw 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
            # default, all axis will be used to exec fft
            x = paddle.ones((2, 3, 4))
            print(paddle.fft.rfftn(x))
            # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[[(24+0j), 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ]],
            #
            #         [[0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ]]])

            # use axes(2, 0)
            print(paddle.fft.rfftn(x, axes=(2, 0)))
            # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[[(8+0j), 0j     , 0j     ],
            #          [(8+0j), 0j     , 0j     ],
            #          [(8+0j), 0j     , 0j     ]],
            #
            #         [[0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ]]])
707 708 709 710 711 712 713 714 715 716 717 718 719

    """
    return fftn_r2c(x, s, axes, norm, forward=True, onesided=True, name=name)


def irfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Computes the inverse of `rfftn`.

    This function computes the inverse of the N-D discrete
    Fourier Transform for real input over any number of axes in an
    M-D array by means of the Fast Fourier Transform (FFT). In
    other words, ``irfftn(rfftn(x), x.shape) == x`` to within numerical
720
    accuracy. (The ``x.shape`` is necessary like ``len(x)`` is for `irfft`,
721 722 723 724 725 726 727 728
    and for the same reason.)

    The input should be ordered in the same way as is returned by `rfftn`,
    i.e., as for `irfft` for the final transformation axis, and as for `ifftn`
    along all the other axes.

    Args:
        x (Tensor): The input data. It's a Tensor type.
729 730 731 732 733 734 735
        s (sequence of ints, optional): The length of the output transform axis.
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).

            - `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used.
            - Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros.
            - If `s` is not given, the shape of the input along the axes specified by axes is used. Except for the last axis which is taken to be ``2*(k-1)``

736
            where ``k`` is the length of the input along that axis.
737

738
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
739
            `len(s)` axes are used, or all axes if `s` is also not specified.
740
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
741 742
            pair and what normalization factor to use. The parameter value must be one
            of "forward" or "backward" or "ortho". Default is "backward". The details of
743
            three operations are shown below:
744

745 746 747
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
748

749
            Where ``n`` is the multiplication of each element in  ``s`` .
750 751 752
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

753
    Returns:
754 755
        Real tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
        or by a combination of `s` or `x`, as explained in the parameters section above. The length of
756 757
        each transformed axis is as given by the corresponding element of `s`, or the length of the input
        in every axis except for the last one if `s` is not given. In the final transformed axis the length
758 759
        of the output when `s` is not given is ``2*(m-1)``, where ``m`` is the length of the final
        transformed axis of the input. To get an odd number of output points in the final axis,
760 761 762 763 764 765 766 767
        `s` must be specified.

    Examples:

        .. code-block:: python

            import paddle

768 769 770 771
            x = paddle.to_tensor([2.+2.j, 2.+2.j, 3.+3.j]).astype(paddle.complex128)
            print(x)
            irfftn_x = paddle.fft.irfftn(x)
            print(irfftn_x)
772

773 774 775 776
            # Tensor(shape=[3], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #        [(2+2j), (2+2j), (3+3j)])
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 2.25000000, -1.25000000,  0.25000000,  0.75000000])
777

778 779 780 781 782 783 784 785 786
    """
    return fftn_c2r(x, s, axes, norm, forward=False, name=name)


def hfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D FFT of Hermitian symmetric complex input, i.e., a
    signal with a real spectrum.

787 788 789 790
    This function calculates the n-D discrete Fourier transform of Hermite symmetric
    complex input on any axis in M-D array by fast Fourier transform (FFT).
    In other words, ``ihfftn(hfftn(x, s)) == x is within the numerical accuracy range.
    (``s`` here are ``x.shape`` and ``s[-1] = x.shape[- 1] * 2 - 1``. This is necessary
791 792 793 794
    for the same reason that ``irfft` requires ``x.shape``.)

    Args:
        x (Tensor): The input data. It's a Tensor type.
795
        s (sequence of ints, optional): The length of the output transform axis.
796 797
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
            number of input points used along this axis, except for the last axis,
798 799 800 801 802
            where ``s[-1]//2+1`` points of the input are used. Along any axis, if
            the shape indicated by `s` is smaller than that of the input, the input
            is cropped. If it is larger, the input is padded with zeros.
            If `s` is not given, the shape of the input along the axes specified by axes
            is used. Except for the last axis which is taken to be ``2*(k-1)`` where
803 804
            ``k`` is the length of the input along that axis.
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
805
            `len(s)` axes are used, or all axes if `s` is also not specified.
806
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
807
            pair and what normalization factor to use. The parameter value must be one
808
            of "forward" or "backward" or "ortho". Default is "backward".
809 810 811
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

812
    Returns:
813
        Real tensor. Truncate or zero fill input, transforming along the axis indicated by axis or
814
        a combination of `s` or `X`.
815

816 817 818 819 820 821
    Examples:

        .. code-block:: python

            import paddle

822 823 824 825 826
            x = paddle.to_tensor([(2+2j), (2+2j), (3+3j)])
            hfftn_x = paddle.fft.hfftn(x)
            print(hfftn_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [ 9.,  3.,  1., -5.])
827 828 829 830 831 832 833 834
    """
    return fftn_c2r(x, s, axes, norm, forward=True, name=name)


def ihfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The n dimensional inverse FFT of a signal that has Hermitian symmetry.

835 836
    This function computes the n dimensional inverse FFT over any number of axes
    in an M-dimensional of a signal that has Hermitian symmetry by means of an
837 838 839 840
    efficient algorithm called the Fast Fourier Transform (FFT).

    Args:
        x(Tensor): Input tensor.
841 842 843 844 845
        s(Sequence[int], optional) : Shape (length along each transformed axis)
            to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis
            1, etc.). Along any axis, if the given shape is smaller than that
            of the input, the input is cropped. If it is larger, the input is
            padded with zeros. if `s` is not given, the shape of the input
846
            along the axes specified by `axes` is used.
847
        axes(Sequence[int], optional) : Axis over which to compute the inverse FFT. If not
848
            given, the last axis is used.
849 850 851
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
852
            default value is "backward".
853 854 855
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
856 857 858 859 860

    Returns:
        out(Tensor) : complex tensor.

    Examples:
861

862
    .. code-block:: python
863 864

        import paddle
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])
    """
    return fftn_r2c(x, s, axes, norm, forward=False, onesided=True, name=name)


# public APIs 2d
def fft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D discrete Fourier Transform

    This function computes the N-D discrete Fourier Transform
    over any axes in an M-D array by means of the
    Fast Fourier Transform (FFT). By default, the transform is computed over
    the last two axes of the input array, i.e., a 2-dimensional FFT.

    Args:
        x (Tensor): The input data. It's a Tensor type.
889 890
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output.
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``.
891 892 893 894
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
895 896
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a
            sequence of 2 integers. If not specified, the last two axes are used by default.
897
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
898
            pair and what normalization factor to use. The parameter value must be one
899
            of "forward" or "backward" or "ortho". Default is "backward".
900 901 902
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

903
    Returns:
904
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
905 906 907 908 909 910 911 912
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import paddle

913 914 915 916
            arr = paddle.arange(2, dtype="float64")
            x = paddle.meshgrid(arr, arr)[0]

            fft2_xp = paddle.fft.fft2(x)
917
            print(fft2_xp)
918 919 920
            # Tensor(shape=[2, 2], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
            #        [[ (2+0j),  0j    ],
            #         [(-2+0j),  0j    ]])
921 922 923 924 925 926

    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
927 928 929 930
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
931 932 933
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
934 935 936 937
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    return fftn(x, s, axes, norm, name)


def ifft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D inverse discrete Fourier Transform.

    This function computes the inverse of the 2-D discrete Fourier
    Transform over any number of axes in an M-D array by means of
    the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(x)) == x``
    to within numerical accuracy. By default, the inverse transform is
    computed over the last two axes of the input array.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fft2`, i.e., it should have the term for zero frequency
    in the low-order corner of the two axes, the positive frequency terms in
    the first half of these axes, the term for the Nyquist frequency in the
    middle of the axes and the negative frequency terms in the second half of
    both axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type.
960 961
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output.
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``.
962 963 964 965
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
966 967
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a
            sequence of 2 integers. If not specified, the last two axes are used by default.
968
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
969
            pair and what normalization factor to use. The parameter value must be one
970
            of "forward" or "backward" or "ortho". Default is "backward".
971
        name (str, optional): The default value is None.  Normally there is no need for user to set
972
            this property. For more information, please refer to :ref:`api_guide_Name`.
973

974
    Returns:
975
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
976 977 978 979 980 981 982 983
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import paddle

984 985 986 987
            arr = paddle.arange(2, dtype="float64")
            x = paddle.meshgrid(arr, arr)[0]

            ifft2_xp = paddle.fft.ifft2(x)
988
            print(ifft2_xp)
989 990 991
            # Tensor(shape=[2, 2], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
            #        [[ (0.5+0j),  0j      ],
            #         [(-0.5+0j),  0j      ]])
992 993 994 995 996
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
997 998 999 1000
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1001 1002 1003
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1004 1005 1006 1007
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    return ifftn(x, s, axes, norm, name)


def rfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    The two dimensional FFT with real tensor input.

    This is really just `rfftn` with different default behavior.
    For more details see `rfftn`.

    Args:
        x(Tensor): Input tensor, taken to be real.
1020
        s(Sequence[int], optional) : Shape of the FFT.
1021
        axes(Sequence[int], optional): Axes over which to compute the FFT.
1022 1023 1024 1025
        norm(str, optional) : {"backward", "ortho", "forward"},
            default is "backward". Indicates which direction of the
            forward/backward pair of transforms is scaled and with what
            normalization factor. The details of
1026
            three operations are shown below:
1027

1028 1029 1030
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
1031

1032
            Where ``n`` is the multiplication of each element in  ``s`` .
1033 1034 1035
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
1036

1037
    Returns:
1038 1039 1040 1041 1042
        out(Tensor): The result of the real 2-D FFT.

    Examples:

    .. code-block:: python
1043

1044
        import paddle
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

        arr = paddle.arange(5, dtype="float64")
        x = paddle.meshgrid(arr, arr)[0]

        result = paddle.fft.rfft2(x)
        print(result.numpy())
        # [[ 50.  +0.j           0.  +0.j           0.  +0.j        ]
        #  [-12.5+17.20477401j   0.  +0.j           0.  +0.j        ]
        #  [-12.5 +4.0614962j    0.  +0.j           0.  +0.j        ]
        #  [-12.5 -4.0614962j    0.  +0.j           0.  +0.j        ]
        #  [-12.5-17.20477401j   0.  +0.j           0.  +0.j        ]]
1056 1057 1058 1059 1060
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1061 1062 1063 1064
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1065 1066 1067
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1068 1069 1070 1071
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    return rfftn(x, s, axes, norm, name)


def irfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Computes the inverse of `rfft2`.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output to the inverse FFT. Default is None.
1082 1083
        axes (sequence of ints, optional): The axes over which to compute the inverse FFT. Axes
            must be two-dimensional. If not specified, the last two axes are used by default.
1084
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
1085 1086
            pair and what normalization factor to use. The parameter value must be one
            of "forward" or "backward" or "ortho". Default is "backward". The details of
1087
            three operations are shown below:
1088

1089 1090 1091
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
1092

1093
            Where ``n`` is the multiplication of each element in  ``s`` .
1094 1095 1096
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .

1097 1098
    Returns:
        Real tensor. The result of the inverse real 2-D FFT.
1099

1100 1101 1102 1103 1104 1105
    Examples:

        .. code-block:: python

            import paddle

1106 1107 1108 1109 1110 1111
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            irfft2_x = paddle.fft.irfft2(x)
            print(irfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 2.37500000, -1.12500000,  0.37500000,  0.87500000],
            #         [ 0.12500000,  0.12500000,  0.12500000,  0.12500000]])
1112 1113 1114 1115 1116
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1117 1118 1119 1120
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1121 1122 1123
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1124 1125 1126 1127
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    return irfftn(x, s, axes, norm, name)


def hfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D FFT of a Hermitian complex array.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output. Default is None.
1138 1139
        axes (sequence of ints, optional):  Axes over which to compute the FFT. Axes must be
            two-dimensional. If not specified, the last two axes are used by default.
1140
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
1141
            pair and what normalization factor to use. The parameter value must be one
1142
            of "forward" or "backward" or "ortho". Default is "backward".
1143 1144 1145
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

1146 1147
    Returns:
        Real tensor. The real result of the 2-D Hermitian complex real FFT.
1148

1149 1150 1151 1152 1153 1154
    Examples:

        .. code-block:: python

            import paddle

1155 1156 1157 1158 1159 1160
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            hfft2_x = paddle.fft.hfft2(x)
            print(hfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[19.,  7.,  3., -9.],
            #         [ 1.,  1.,  1.,  1.]])
1161 1162 1163 1164 1165
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1166 1167 1168 1169
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1170 1171 1172
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1173 1174 1175 1176
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    return hfftn(x, s, axes, norm, name)


def ihfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the two dimensional inverse FFT of a real spectrum.

    This is really `ihfftn` with different defaults.
    For more details see `ihfftn`.

    Args:
1188
        x(Tensor): Input tensor.
1189
        s(Sequence[int], optional): Shape of the real input to the inverse FFT.
1190
        axes(Sequance[int], optional): The axes over which to compute the
1191
            inverse fft. Default is the last two axes.
1192
        norm(str, optional): {"backward", "ortho", "forward"}. Default is
1193
            "backward".
1194 1195 1196
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

    Returns:
        out(Tensor) : The result of the inverse hermitian 2-D FFT.

    Examples:

        .. code-block:: python

            import paddle

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
            arr = paddle.arange(5, dtype="float64")
            x = paddle.meshgrid(arr, arr)[0]
            print(x)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 0., 0., 0., 0.],
            #         [1., 1., 1., 1., 1.],
            #         [2., 2., 2., 2., 2.],
            #         [3., 3., 3., 3., 3.],
            #         [4., 4., 4., 4., 4.]])

            ihfft2_xp = paddle.fft.ihfft2(x)
            print(ihfft2_xp.numpy())
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            # [[ 2. +0.j          0. +0.j          0. +0.j        ]
            #  [-0.5-0.68819096j  0. +0.j          0. +0.j        ]
            #  [-0.5-0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.68819096j  0. +0.j          0. +0.j        ]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1229 1230 1231 1232
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1233 1234 1235
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1236 1237 1238 1239
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    return ihfftn(x, s, axes, norm, name)


# public APIs utilities
def fftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
1260
        name (str, optional): The default value is None.  Normally there is no need for user to set
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length 'n' containing the sampling frequency.

    Examples:

        .. code-block:: python

            import paddle

            scalar_temp = 0.5
1273
            fftfreq_xp = paddle.fft.fftfreq(5, d=scalar_temp)
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            print(fftfreq_xp)
            #  Tensor(shape=[5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [ 0.        ,  0.40000001,  0.80000001, -0.80000001, -0.40000001])
    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = (n + 1) // 2
    neg_max = n // 2
    indices = paddle.arange(-neg_max, pos_max, dtype=dtype, name=name)
    indices = paddle.roll(indices, -neg_max, name=name)
    return indices * val


def rfftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

1292 1293
    The returned floating-point array "F" contains the center of the frequency unit,
    and the unit is the number of cycles of the sampling interval (the starting point is zero).
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    the Nyquist frequency component is considered to be positive.

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
1305
        dtype (str, optional): The data type of returns. Defaults is the data type of returns
1306
            of ``paddle.get_default_dtype()``.
1307
        name (str, optional): The default value is None.  Normally there is no need for user to set
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length ``n//2 + 1`` containing the sample frequencies.

    Examples:

        .. code-block:: python

            import paddle

            scalar_temp = 0.3
1320
            rfftfreq_xp = paddle.fft.rfftfreq(5, d=scalar_temp)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
            print(rfftfreq_xp)

            #  Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [0.        , 0.66666669, 1.33333337])

    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = 1 + n // 2
    indices = paddle.arange(0, pos_max, dtype=dtype, name=name)
    return indices * val


def fftshift(x, axes=None, name=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half spaces for all the axes listed (all by default).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
1346
        name (str, optional): The default value is None.  Normally there is no need for user to set
1347 1348 1349 1350
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
1351

1352 1353 1354 1355 1356 1357
    Examples:

        .. code-block:: python

            import paddle

1358 1359 1360 1361 1362 1363
            fftfreq_xp = paddle.fft.fftfreq(5, d=0.3)
            print(fftfreq_xp)
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0.        ,  0.66666669,  1.33333337, -1.33333337, -0.66666669])

            res = paddle.fft.fftshift(fftfreq_xp)
1364
            print(res)
1365 1366
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-1.33333337, -0.66666669,  0.        ,  0.66666669,  1.33333337])
1367 1368 1369 1370 1371

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1372 1373 1374
        rank = len(x.shape)
        axes = list(range(0, rank))
        shifts = shape // 2
1375 1376 1377
    elif isinstance(axes, int):
        shifts = shape[axes] // 2
    else:
1378
        shifts = paddle.concat([shape[ax] // 2 for ax in axes])
1379 1380 1381 1382 1383
    return paddle.roll(x, shifts, axes, name=name)


def ifftshift(x, axes=None, name=None):
    """
1384
    The inverse of `fftshift`. Although the even length 'x' is the same, the function of the
1385 1386 1387 1388 1389 1390
    odd length 'x' is different. An example.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
1391
        name (str, optional): The default value is None.  Normally there is no need for user to set
1392 1393 1394 1395
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
1396

1397 1398 1399 1400 1401 1402
    Examples:

        .. code-block:: python

            import paddle

1403 1404 1405 1406 1407 1408
            fftfreq_xp = paddle.fft.fftfreq(5, d=0.3)
            print(fftfreq_xp)
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0.        ,  0.66666669,  1.33333337, -1.33333337, -0.66666669])

            res = paddle.fft.ifftshift(fftfreq_xp)
1409
            print(res)
1410 1411
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 1.33333337, -1.33333337, -0.66666669,  0.        ,  0.66666669])
1412 1413 1414 1415 1416

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1417 1418
        rank = len(x.shape)
        axes = list(range(0, rank))
1419
        shifts = -shape // 2
1420 1421 1422
    elif isinstance(axes, int):
        shifts = -shape[axes] // 2
    else:
1423
        shifts = paddle.concat([-shape[ax] // 2 for ax in axes])
1424 1425 1426 1427 1428
    return paddle.roll(x, shifts, axes, name=name)


# internal functions
def fft_c2c(x, n, axis, norm, forward, name):
1429
    if is_integer(x):
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)

    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)
F
Feiyu Chan 已提交
1446
    if in_dygraph_mode():
1447
        out = _C_ops.fft_c2c(x, axes, norm, forward)
F
Feiyu Chan 已提交
1448
    elif _in_legacy_dygraph():
1449
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1450
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1451
    else:
1452 1453 1454
        inputs = {
            'X': [x],
        }
1455 1456 1457 1458 1459
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1460 1461 1462
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1463 1464 1465 1466
    return out


def fft_r2c(x, n, axis, norm, forward, onesided, name):
1467
    if is_integer(x):
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1481
    if in_dygraph_mode():
1482
        out = _C_ops.fft_r2c(x, axes, norm, forward, onesided)
F
Feiyu Chan 已提交
1483
    elif _in_legacy_dygraph():
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
        attrs = (
            'axes',
            axes,
            'normalization',
            norm,
            'forward',
            forward,
            'onesided',
            onesided,
        )
1494
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1495
    else:
1496 1497 1498
        inputs = {
            'X': [x],
        }
1499 1500 1501 1502 1503 1504 1505 1506 1507
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1508 1509
            _real_to_complex_dtype(dtype)
        )
1510
        outputs = {"Out": [out]}
1511 1512 1513
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1514 1515 1516 1517
    return out


def fft_c2r(x, n, axis, norm, forward, name):
1518
    if is_integer(x):
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n // 2 + 1]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1534 1535
    if in_dygraph_mode():
        if n is not None:
1536
            out = _C_ops.fft_c2r(x, axes, norm, forward, n)
F
Feiyu Chan 已提交
1537
        else:
1538
            out = _C_ops.fft_c2r(x, axes, norm, forward, 0)
F
Feiyu Chan 已提交
1539
    elif _in_legacy_dygraph():
1540
        if n is not None:
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
            attrs = (
                'axes',
                axes,
                'normalization',
                norm,
                'forward',
                forward,
                'last_dim_size',
                n,
            )
1551 1552
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1553
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1554
    else:
1555 1556 1557
        inputs = {
            'X': [x],
        }
1558 1559 1560 1561 1562 1563
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if n is not None:
            attrs['last_dim_size'] = n
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1564 1565
            _complex_to_real_dtype(dtype)
        )
1566
        outputs = {"Out": [out]}
1567 1568 1569
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1570 1571 1572 1573
    return out


def fftn_c2c(x, s, axes, norm, forward, name):
1574
    if is_integer(x):
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes).tolist()
        axes = [axes[i] for i in axes_argsoft]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1597 1598 1599 1600
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1601 1602 1603 1604 1605 1606 1607
            s = [s[i] for i in axes_argsoft]

    if s is not None:
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1608
    if in_dygraph_mode():
1609
        out = _C_ops.fft_c2c(x, axes, norm, forward)
F
Feiyu Chan 已提交
1610
    elif _in_legacy_dygraph():
1611
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1612
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1613
    else:
1614 1615 1616
        inputs = {
            'X': [x],
        }
1617 1618 1619 1620 1621
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1622 1623 1624
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1625 1626 1627 1628
    return out


def fftn_r2c(x, s, axes, norm, forward, onesided, name):
1629
    if is_integer(x):
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1650 1651 1652 1653
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1654 1655 1656 1657 1658 1659 1660 1661
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        x = _resize_fft_input(x, s, axes)

    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1662
    if in_dygraph_mode():
1663
        out = _C_ops.fft_r2c(x, axes, norm, forward, onesided)
F
Feiyu Chan 已提交
1664
    elif _in_legacy_dygraph():
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        attrs = (
            'axes',
            axes,
            'normalization',
            norm,
            'forward',
            forward,
            'onesided',
            onesided,
        )
1675
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1676
    else:
1677 1678 1679
        inputs = {
            'X': [x],
        }
1680 1681 1682 1683 1684 1685 1686 1687 1688
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1689 1690
            _real_to_complex_dtype(dtype)
        )
1691
        outputs = {"Out": [out]}
1692 1693 1694
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1695 1696 1697 1698 1699

    return out


def fftn_c2r(x, s, axes, norm, forward, name):
1700
    if is_integer(x):
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1723 1724 1725 1726
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        fft_input_shape = list(s)
        fft_input_shape[-1] = fft_input_shape[-1] // 2 + 1
        x = _resize_fft_input(x, fft_input_shape, axes)

    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1737 1738
    if in_dygraph_mode():
        if s is not None:
1739
            out = _C_ops.fft_c2r(x, axes, norm, forward, s[-1])
F
Feiyu Chan 已提交
1740
        else:
1741
            out = _C_ops.fft_c2r(x, axes, norm, forward, 0)
F
Feiyu Chan 已提交
1742
    elif _in_legacy_dygraph():
1743
        if s:
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
            attrs = (
                'axes',
                axes,
                'normalization',
                norm,
                'forward',
                forward,
                'last_dim_size',
                s[-1],
            )
1754 1755
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1756
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1757
    else:
1758 1759 1760
        inputs = {
            'X': [x],
        }
1761 1762 1763 1764 1765 1766
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if s:
            attrs["last_dim_size"] = s[-1]
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1767 1768
            _complex_to_real_dtype(dtype)
        )
1769
        outputs = {"Out": [out]}
1770 1771 1772
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1773
    return out