fft.py 70.4 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from typing import Sequence
import numpy as np
import paddle
18
from .tensor.attribute import is_floating_point, is_integer
19
from .tensor.creation import _real_to_complex_dtype, _complex_to_real_dtype
F
Feiyu Chan 已提交
20
from .fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21
from . import _C_ops, _legacy_C_ops
22 23 24 25
from .fluid.data_feeder import check_variable_and_dtype
from .fluid.layer_helper import LayerHelper

__all__ = [
Z
zhiboniu 已提交
26 27 28 29 30 31
    'fft',
    'ifft',
    'rfft',
    'irfft',
    'hfft',
    'ihfft',
32 33 34 35 36
    'fft2',
    'ifft2',
    'rfft2',
    'irfft2',
    'hfft2',
Z
zhiboniu 已提交
37
    'ihfft2',
38 39 40 41 42
    'fftn',
    'ifftn',
    'rfftn',
    'irfftn',
    'hfftn',
Z
zhiboniu 已提交
43 44 45 46
    'ihfftn',
    'fftfreq',
    'rfftfreq',
    'fftshift',
47
    'ifftshift',
Z
zhiboniu 已提交
48
]
49 50 51 52 53


def _check_normalization(norm):
    if norm not in ['forward', 'backward', 'ortho']:
        raise ValueError(
54 55 56 57
            "Unexpected norm: {}. Norm should be forward, backward or ortho".format(
                norm
            )
        )
58 59 60 61 62


def _check_fft_n(n):
    if not isinstance(n, int):
        raise ValueError(
63 64
            "Invalid FFT argument n({}), it shoule be an integer.".format(n)
        )
65 66
    if n <= 0:
        raise ValueError(
67 68
            "Invalid FFT argument n({}), it should be positive.".format(n)
        )
69 70 71 72 73 74


def _check_fft_shape(x, s):
    ndim = x.ndim
    if not isinstance(s, Sequence):
        raise ValueError(
75 76
            "Invaid FFT argument s({}), it should be a sequence of integers."
        )
77 78 79 80

    if len(s) > ndim:
        raise ValueError(
            "Length of FFT argument s should not be larger than the rank of input. "
81 82
            "Received s: {}, rank of x: {}".format(s, ndim)
        )
83 84
    for size in s:
        if not isinstance(size, int) or size <= 0:
85 86 87
            raise ValueError(
                "FFT sizes {} contains invalid value ({})".format(s, size)
            )
88 89 90 91 92 93


def _check_fft_axis(x, axis):
    ndim = x.ndim
    if not isinstance(axis, int):
        raise ValueError(
94 95
            "Invalid FFT axis ({}), it shoule be an integer.".format(axis)
        )
96 97 98
    if axis < -ndim or axis >= ndim:
        raise ValueError(
            "Invalid FFT axis ({}), it should be in range [-{}, {})".format(
99 100 101
                axis, ndim, ndim
            )
        )
102 103 104 105 106 107


def _check_fft_axes(x, axes):
    ndim = x.ndim
    if not isinstance(axes, Sequence):
        raise ValueError(
108 109 110 111
            "Invalid FFT axes ({}), it should be a sequence of integers.".format(
                axes
            )
        )
112 113 114
    if len(axes) > ndim:
        raise ValueError(
            "Length of fft axes should not be larger than the rank of input. "
115 116
            "Received, len of axes: {}, rank of x: {}".format(len(axes), ndim)
        )
117 118 119
    for axis in axes:
        if not isinstance(axis, int) or axis < -ndim or axis >= ndim:
            raise ValueError(
120 121 122 123
                "FFT axes {} contains invalid value ({}), it should be in range [-{}, {})".format(
                    axes, axis, ndim, ndim
                )
            )
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144


def _resize_fft_input(x, s, axes):
    if len(s) != len(axes):
        raise ValueError("length of `s` should equals length of `axes`.")
    shape = x.shape
    ndim = x.ndim

    axes_to_pad = []
    paddings = []
    axes_to_slice = []
    slices = []
    for i, axis in enumerate(axes):
        if shape[axis] < s[i]:
            axes_to_pad.append(axis)
            paddings.append(s[i] - shape[axis])
        elif shape[axis] > s[i]:
            axes_to_slice.append(axis)
            slices.append((0, s[i]))

    if axes_to_slice:
145 146 147 148 149 150
        x = paddle.slice(
            x,
            axes_to_slice,
            starts=[item[0] for item in slices],
            ends=[item[1] for item in slices],
        )
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    if axes_to_pad:
        padding_widths = [0] * (2 * ndim)
        for axis, pad in zip(axes_to_pad, paddings):
            padding_widths[2 * axis + 1] = pad
        x = paddle.nn.functional.pad(x, padding_widths)
    return x


def _normalize_axes(x, axes):
    ndim = x.ndim
    return [item if item >= 0 else (item + ndim) for item in axes]


def _check_at_least_ndim(x, rank):
    if x.ndim < rank:
166 167 168
        raise ValueError(
            "The rank of the input ({}) should >= {}".format(x.ndim, rank)
        )
169 170 171 172 173 174 175


# public APIs 1d
def fft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Calculate one-dimensional discrete Fourier transform.

176
    This function uses the efficient fast Fourier transform (FFT) algorithm [1] to
177 178 179 180
    calculate the 1-D * n * point discrete Fourier transform (DFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
181 182 183
        n (int, optional): The length of the output transform axis. If `n` is less than
            the length input, the input will be cropped. If larger, the input is filled
            with zeros. If `n` is not given, the input length along the axis specified
184
            by `axis` is used.
185 186
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
187
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
188
            pair and what normalization factor to use. The parameter value must be one
189
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
190 191
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
192
            scaled by ``1/sqrt(n)``.
193
        name (str, optional): The default value is None.  Normally there is no need for user to set
194 195 196
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
197
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated
198
        by `axis`, or the last one if `axis` is not specified.
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            fft_xp = paddle.fft.fft(xp).numpy()
            print(fft_xp)
            #  [1.+1.25396034e+00j 1.+4.38128627e+00j 1.-4.38128627e+00j
            #   1.-1.25396034e+00j 1.-4.81574619e-01j 1.+8.88178420e-16j
            #   1.+4.81574619e-01j]


    """
217
    if is_integer(x) or is_floating_point(x):
218 219 220
        return fft_r2c(
            x, n, axis, norm, forward=True, onesided=False, name=name
        )
221 222 223 224 225 226 227 228
    else:
        return fft_c2c(x, n, axis, norm, forward=True, name=name)


def ifft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the 1-D inverse discrete Fourier Transform.

229
    This function computes the inverse of the 1-D *n*-point discrete Fourier transform
230 231 232 233 234 235 236 237 238 239 240 241
    computed by `fft`.  In other words, ``ifft(fft(x)) == x`` to within numerical accuracy.

    The input should be ordered in the same way as is returned by `fft`,
    i.e.,

    * ``x[0]`` should contain the zero frequency term,
    * ``x[1:n//2]`` should contain the positive-frequency terms,
    * ``x[n//2 + 1:]`` should contain the negative-frequency terms, in
      increasing order starting from the most negative frequency.

    For an even number of input points, ``x[n//2]`` represents the sum of
    the values at the positive and negative Nyquist frequencies, as the two
242
    are aliased together.
243 244 245

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
246 247 248
        n (int, optional): The length of the output transform axis. If `n` is less than
            the length input, the input will be cropped. If larger, the input is filled
            with zeros. If `n` is not given, the input length along the axis specified
249
            by `axis` is used.
250 251
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
252
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
253
            pair and what normalization factor to use. The parameter value must be one
254
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
255 256
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
257
            scaled by ``1/sqrt(n)``.
258
        name (str, optional): The default value is None.  Normally there is no need for user to set
259
            this property. For more information, please refer to :ref:`api_guide_Name`.
260

261
    Returns:
262
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        by `axis`, or the last one if `axis` is not specified.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            ifft_xp = paddle.fft.ifft(xp).numpy()
            print(ifft_xp)
            #  [0.14285714+1.79137191e-01j 0.14285714+6.87963741e-02j
            #   0.14285714+1.26882631e-16j 0.14285714-6.87963741e-02j
            #   0.14285714-1.79137191e-01j 0.14285714-6.25898038e-01j
            #   0.14285714+6.25898038e-01j]

    """
282
    if is_integer(x) or is_floating_point(x):
283 284 285
        return fft_r2c(
            x, n, axis, norm, forward=False, onesided=False, name=name
        )
286 287 288 289 290 291 292 293 294 295 296 297 298
    else:
        return fft_c2c(x, n, axis, norm, forward=False, name=name)


def rfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The one dimensional FFT for real input.

    This function computes the one dimensional *n*-point discrete Fourier
    Transform (DFT) of a real-valued tensor by means of an efficient algorithm
    called the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
299 300
    Hermitian-symmetric. This function does not compute the negative frequency
    terms, and the length of the transformed axis of the output is therefore
301 302 303
    ``n//2 + 1``.

    Args:
304 305 306 307 308
        x(Tensor) : Real-valued input tensor
        n(int, optional): Number of points along transformation axis in the
            input to use. If `n` is smaller than the length of the input, the
            input is cropped. If it is larger, the input is padded with zeros.
            If `n` is not given, the length of the input along the axis
309
            specified by `axis` is used.
310
        axis(int, optional): Axis over which to compute the FFT. Default value
311
            is last axis.
312 313 314
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward  pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
315
            default value is "backward".
316

317 318 319
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
320

321
            Where ``n`` is the multiplication of each element in  ``s`` .
322 323 324
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
325 326 327 328 329

    Returns:
        out(Tensor) : complex tensor

    Examples:
330

331
    .. code-block:: python
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346
        import paddle

        x = paddle.to_tensor([0.0, 1.0, 0.0, 0.0])
        print(paddle.fft.rfft(x))
        # Tensor(shape=[3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [ (1+0j), -1j    , (-1+0j)])
    """
    return fft_r2c(x, n, axis, norm, forward=True, onesided=True, name=name)


def irfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Computes the inverse of `rfft`.

347 348
    This function calculates the inverse of the one-dimensional *n* point discrete
    Fourier transform of the actual input calculated by "rfft". In other words,
349 350
    ``irfft(rfft(a),len(a)) == a`` is within the numerical accuracy range.

351 352 353 354
    The input shall be in the form of "rfft", i.e. the actual zero frequency term,
    followed by the complex positive frequency term, in the order of increasing frequency.
    Because the discrete Fourier transform of the actual input is Hermite symmetric,
    the negative frequency term is regarded as the complex conjugate term of the corresponding
355 356 357 358 359
    positive frequency term.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
360 361 362
            points, ``n//2 + 1``input points are necessary. If the length of the input tensor is greater
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given,
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified
363
            along the ` axis'.
364 365
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
366
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
367
            pair and what normalization factor to use. The parameter value must be one
368
            of "forward" or "backward" or "ortho". Default is "backward".
369 370
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
371 372

    Returns:
373 374 375
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis.
376 377
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1``
        in some cases.
378

379 380 381 382 383 384
    Examples:

        .. code-block:: python

            import paddle

385 386 387 388 389
            x = paddle.to_tensor([1, -1j, -1])
            irfft_x = paddle.fft.irfft(x)
            print(irfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 1., 0., 0.])
390 391 392 393 394 395 396 397 398 399 400 401
    """
    return fft_c2r(x, n, axis, norm, forward=False, name=name)


def hfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the FFT of a signal that has Hermitian symmetry, a real
    spectrum.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
402 403 404
            points, ``n//2 + 1`` input points are necessary. If the length of the input tensor is greater
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given,
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified
405
            along the ` axis'.
406 407
        axis (int,optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
408
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
409
            pair and what normalization factor to use. The parameter value must be one
410
            of "forward" or "backward" or "ortho". Default is "backward".
411 412
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
413 414

    Returns:
415 416 417 418
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis.
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1`` in
419
        some cases.
420

421 422 423 424 425 426
    Examples:

        .. code-block:: python

            import paddle

427 428 429 430 431
            x = paddle.to_tensor([1, -1j, -1])
            hfft_x = paddle.fft.hfft(x)
            print(hfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 0., 0., 4.])
432 433 434 435 436 437 438 439 440
    """

    return fft_c2r(x, n, axis, norm, forward=True, name=name)


def ihfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The inverse FFT of a signal that has Hermitian symmetry.

441 442
    This function computes the one dimensional *n*-point inverse FFT of a signal
    that has Hermitian symmetry by means of an efficient algorithm called
443 444 445
    the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
446 447
    Hermitian-symmetric. This function does not compute the negative frequency
    terms, and the length of the transformed axis of the output is therefore
448 449 450 451
    ``n//2 + 1``.

    Args:
        x(Tensor): Input tensor.
452 453 454 455
        n(int, optional): The number of points along transformation axis in the
            input to use.  If `n` is smaller than the length of the input, the
            input is cropped.  If it is larger, the input is padded with zeros.
            If `n` is not given, the length of the input along the axis
456 457 458
            specified by `axis` is used.
        axis(int, optional) : Axis over which to compute the inverse FFT. If not
            given, the last axis is used.
459 460 461
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
462
            default value is "backward".
463 464 465
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
466 467 468 469 470

    Returns:
        out(Tensor) : complex tensor.

    Examples:
471

472
    .. code-block:: python
473 474

        import paddle
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])

    """
    return fft_r2c(x, n, axis, norm, forward=False, onesided=True, name=name)


# public APIs nd
def fftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D discrete Fourier Transform.

493
    This function calculates the n-D discrete Fourier transform on any number of axes
494 495 496 497 498 499 500 501 502 503 504 505
    in the M-D array by fast Fourier transform (FFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
506
            axes are used, or all axes if `s` is also not specified.
507
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
508
            pair and what normalization factor to use. The parameter value must be one
509
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
510 511
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
512
            scaled by ``1/sqrt(n)``.
513
        name (str, optional): The default value is None.  Normally there is no need for user to set
514 515 516
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
517
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by
518
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:4, :4, :4][1]
            xp = paddle.to_tensor(x)
            fftn_xp = paddle.fft.fftn(xp, axes=(1, 2)).numpy()
            print(fftn_xp)
            #  [[[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]]
    """
548
    if is_integer(x) or is_floating_point(x):
549 550 551
        return fftn_r2c(
            x, s, axes, norm, forward=True, onesided=False, name=name
        )
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    else:
        return fftn_c2c(x, s, axes, norm, forward=True, name=name)


def ifftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D inverse discrete Fourier Transform.

    This function computes the inverse of the N-D discrete
    Fourier Transform over any number of axes in an M-D array by
    means of the Fast Fourier Transform (FFT).  In other words,
    ``ifftn(fftn(x)) == x`` to within numerical accuracy.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fftn`, i.e., it should have the term for zero frequency
    in all axes in the low-order corner, the positive frequency terms in the
    first half of all axes, the term for the Nyquist frequency in the middle
    of all axes and the negative frequency terms in the second half of all
    axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
582
            axes are used, or all axes if `s` is also not specified.
583
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
584
            pair and what normalization factor to use. The parameter value must be one
585
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
586 587
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
588
            scaled by ``1/sqrt(n)``.
589
        name (str, optional): The default value is None.  Normally there is no need for user to set
590
            this property. For more information, please refer to :ref:`api_guide_Name`.
591

592
    Returns:
593
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by
594
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
595

596 597 598 599 600 601
    Examples:

        .. code-block:: python

            import paddle

602 603 604 605 606 607 608 609 610 611 612 613 614
            x = paddle.eye(3)
            ifftn_x = paddle.fft.ifftn(x, axes=(1,))
            print(ifftn_x)
            # Tensor(shape=[3, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[ (0.3333333432674408+0j)                  ,
            #           (0.3333333432674408-0j)                  ,
            #           (0.3333333432674408+0j)                  ],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204+0.28867512941360474j),
            #          (-0.1666666716337204-0.28867512941360474j)],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204-0.28867512941360474j),
            #          (-0.1666666716337204+0.28867512941360474j)]])
615
    """
616
    if is_integer(x) or is_floating_point(x):
617 618 619
        return fftn_r2c(
            x, s, axes, norm, forward=False, onesided=False, name=name
        )
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    else:
        return fftn_c2c(x, s, axes, norm, forward=False, name=name)


def rfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The N dimensional FFT for real input.

    This function computes the N-dimensional discrete Fourier Transform over
    any number of axes in an M-dimensional real array by means of the Fast
    Fourier Transform (FFT).  By default, all axes are transformed, with the
    real transform performed over the last axis, while the remaining
    transforms are complex.

    The transform for real input is performed over the last transformation
    axis, as by `rfft`, then the transform over the remaining axes is
    performed as by `fftn`.  The order of the output is as for `rfft` for the
    final transformation axis, and as for `fftn` for the remaining
    transformation axes.

    Args:
        x(Tensor) : Input tensor, taken to be real.
642 643 644 645 646 647
        s(Sequence[int], optional) : Shape to use from the exec fft. The final element of
            `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining
            axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if
            the given shape is smaller than that of the input, the input is
            cropped.  If it is larger, the input is padded with zeros. if `s` is
            not given, the shape of the input along the axes specified by `axes`
648
            is used.
649 650
        axes(Sequence[int], optional) : Axes over which to compute the FFT.  If not given,
            the last ``len(s)`` axes are used, or all axes if `s` is also not
651
            specified.
652 653 654 655
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
            default value is "backward". The details of
656
            three operations are shown below:
657 658

                - "backward": The factor of forward direction and backward direction are ``1``
659
                and ``1/n`` respectively;
660
                - "forward": The factor of forward direction and backward direction are ``1/n``
661 662
                and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
663

664
            Where ``n`` is the multiplication of each element in  ``s`` .
665 666 667
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
668 669 670 671 672

    Returns:
        out(Tensor): complex tensor

    Examples:
673

674
    .. code-block:: python
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        import paddle

        # default, all axis will be used to exec fft
        x = paddle.ones((2, 3, 4))
        print(paddle.fft.rfftn(x))
        # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[[(24+0j), 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]],
        #
        #         [[0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]]])

        # use axes(2, 0)
        print(paddle.fft.rfftn(x, axes=(2, 0)))
        # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[[(8+0j), 0j     , 0j     ],
        #          [(8+0j), 0j     , 0j     ],
        #          [(8+0j), 0j     , 0j     ]],
        #
        #         [[0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]]])

    """
    return fftn_r2c(x, s, axes, norm, forward=True, onesided=True, name=name)


def irfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Computes the inverse of `rfftn`.

    This function computes the inverse of the N-D discrete
    Fourier Transform for real input over any number of axes in an
    M-D array by means of the Fast Fourier Transform (FFT). In
    other words, ``irfftn(rfftn(x), x.shape) == x`` to within numerical
713
    accuracy. (The ``x.shape`` is necessary like ``len(x)`` is for `irfft`,
714 715 716 717 718 719 720 721
    and for the same reason.)

    The input should be ordered in the same way as is returned by `rfftn`,
    i.e., as for `irfft` for the final transformation axis, and as for `ifftn`
    along all the other axes.

    Args:
        x (Tensor): The input data. It's a Tensor type.
722 723 724 725 726 727 728
        s (sequence of ints, optional): The length of the output transform axis.
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).

            - `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used.
            - Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros.
            - If `s` is not given, the shape of the input along the axes specified by axes is used. Except for the last axis which is taken to be ``2*(k-1)``

729
            where ``k`` is the length of the input along that axis.
730

731
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
732
            `len(s)` axes are used, or all axes if `s` is also not specified.
733
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
734 735
            pair and what normalization factor to use. The parameter value must be one
            of "forward" or "backward" or "ortho". Default is "backward". The details of
736
            three operations are shown below:
737

738 739 740
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
741

742
            Where ``n`` is the multiplication of each element in  ``s`` .
743 744 745
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

746
    Returns:
747 748
        Real tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
        or by a combination of `s` or `x`, as explained in the parameters section above. The length of
749 750
        each transformed axis is as given by the corresponding element of `s`, or the length of the input
        in every axis except for the last one if `s` is not given. In the final transformed axis the length
751 752
        of the output when `s` is not given is ``2*(m-1)``, where ``m`` is the length of the final
        transformed axis of the input. To get an odd number of output points in the final axis,
753 754 755 756 757 758 759 760
        `s` must be specified.

    Examples:

        .. code-block:: python

            import paddle

761 762 763 764
            x = paddle.to_tensor([2.+2.j, 2.+2.j, 3.+3.j]).astype(paddle.complex128)
            print(x)
            irfftn_x = paddle.fft.irfftn(x)
            print(irfftn_x)
765

766 767 768 769
            # Tensor(shape=[3], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #        [(2+2j), (2+2j), (3+3j)])
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 2.25000000, -1.25000000,  0.25000000,  0.75000000])
770

771 772 773 774 775 776 777 778 779
    """
    return fftn_c2r(x, s, axes, norm, forward=False, name=name)


def hfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D FFT of Hermitian symmetric complex input, i.e., a
    signal with a real spectrum.

780 781 782 783
    This function calculates the n-D discrete Fourier transform of Hermite symmetric
    complex input on any axis in M-D array by fast Fourier transform (FFT).
    In other words, ``ihfftn(hfftn(x, s)) == x is within the numerical accuracy range.
    (``s`` here are ``x.shape`` and ``s[-1] = x.shape[- 1] * 2 - 1``. This is necessary
784 785 786 787
    for the same reason that ``irfft` requires ``x.shape``.)

    Args:
        x (Tensor): The input data. It's a Tensor type.
788
        s (sequence of ints, optional): The length of the output transform axis.
789 790
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
            number of input points used along this axis, except for the last axis,
791 792 793 794 795
            where ``s[-1]//2+1`` points of the input are used. Along any axis, if
            the shape indicated by `s` is smaller than that of the input, the input
            is cropped. If it is larger, the input is padded with zeros.
            If `s` is not given, the shape of the input along the axes specified by axes
            is used. Except for the last axis which is taken to be ``2*(k-1)`` where
796 797
            ``k`` is the length of the input along that axis.
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
798
            `len(s)` axes are used, or all axes if `s` is also not specified.
799
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
800
            pair and what normalization factor to use. The parameter value must be one
801
            of "forward" or "backward" or "ortho". Default is "backward".
802 803 804
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

805
    Returns:
806
        Real tensor. Truncate or zero fill input, transforming along the axis indicated by axis or
807
        a combination of `s` or `X`.
808

809 810 811 812 813 814
    Examples:

        .. code-block:: python

            import paddle

815 816 817 818 819
            x = paddle.to_tensor([(2+2j), (2+2j), (3+3j)])
            hfftn_x = paddle.fft.hfftn(x)
            print(hfftn_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [ 9.,  3.,  1., -5.])
820 821 822 823 824 825 826 827
    """
    return fftn_c2r(x, s, axes, norm, forward=True, name=name)


def ihfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The n dimensional inverse FFT of a signal that has Hermitian symmetry.

828 829
    This function computes the n dimensional inverse FFT over any number of axes
    in an M-dimensional of a signal that has Hermitian symmetry by means of an
830 831 832 833
    efficient algorithm called the Fast Fourier Transform (FFT).

    Args:
        x(Tensor): Input tensor.
834 835 836 837 838
        s(Sequence[int], optional) : Shape (length along each transformed axis)
            to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis
            1, etc.). Along any axis, if the given shape is smaller than that
            of the input, the input is cropped. If it is larger, the input is
            padded with zeros. if `s` is not given, the shape of the input
839
            along the axes specified by `axes` is used.
840
        axes(Sequence[int], optional) : Axis over which to compute the inverse FFT. If not
841
            given, the last axis is used.
842 843 844
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
845
            default value is "backward".
846 847 848
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
849 850 851 852 853

    Returns:
        out(Tensor) : complex tensor.

    Examples:
854

855
    .. code-block:: python
856 857

        import paddle
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])
    """
    return fftn_r2c(x, s, axes, norm, forward=False, onesided=True, name=name)


# public APIs 2d
def fft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D discrete Fourier Transform

    This function computes the N-D discrete Fourier Transform
    over any axes in an M-D array by means of the
    Fast Fourier Transform (FFT). By default, the transform is computed over
    the last two axes of the input array, i.e., a 2-dimensional FFT.

    Args:
        x (Tensor): The input data. It's a Tensor type.
882 883
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output.
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``.
884 885 886 887
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
888 889
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a
            sequence of 2 integers. If not specified, the last two axes are used by default.
890
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
891
            pair and what normalization factor to use. The parameter value must be one
892
            of "forward" or "backward" or "ortho". Default is "backward".
893 894 895
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

896
    Returns:
897
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:2, :2][1]
            xp = paddle.to_tensor(x)
            fft2_xp = paddle.fft.fft2(xp).numpy()
            print(fft2_xp)
            #  [[ 2.+0.j -2.+0.j]
            #   [ 0.+0.j  0.+0.j]]

    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
919 920 921 922
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
923 924 925
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
926 927 928 929
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
    return fftn(x, s, axes, norm, name)


def ifft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D inverse discrete Fourier Transform.

    This function computes the inverse of the 2-D discrete Fourier
    Transform over any number of axes in an M-D array by means of
    the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(x)) == x``
    to within numerical accuracy. By default, the inverse transform is
    computed over the last two axes of the input array.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fft2`, i.e., it should have the term for zero frequency
    in the low-order corner of the two axes, the positive frequency terms in
    the first half of these axes, the term for the Nyquist frequency in the
    middle of the axes and the negative frequency terms in the second half of
    both axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type.
952 953
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output.
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``.
954 955 956 957
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
958 959
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a
            sequence of 2 integers. If not specified, the last two axes are used by default.
960
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
961
            pair and what normalization factor to use. The parameter value must be one
962
            of "forward" or "backward" or "ortho". Default is "backward".
963
        name (str, optional): The default value is None.  Normally there is no need for user to set
964
            this property. For more information, please refer to :ref:`api_guide_Name`.
965

966
    Returns:
967
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:2, :2][1]
            xp = paddle.to_tensor(x)
            ifft2_xp = paddle.fft.ifft2(xp).numpy()
            print(ifft2_xp)
            #  [[ 0.5+0.j -0.5+0.j]
            #   [ 0. +0.j  0. +0.j]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
988 989 990 991
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
992 993 994
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
995 996 997 998
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    return ifftn(x, s, axes, norm, name)


def rfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    The two dimensional FFT with real tensor input.

    This is really just `rfftn` with different default behavior.
    For more details see `rfftn`.

    Args:
        x(Tensor): Input tensor, taken to be real.
1011
        s(Sequence[int], optional) : Shape of the FFT.
1012
        axes(Sequence[int], optional): Axes over which to compute the FFT.
1013 1014 1015 1016
        norm(str, optional) : {"backward", "ortho", "forward"},
            default is "backward". Indicates which direction of the
            forward/backward pair of transforms is scaled and with what
            normalization factor. The details of
1017
            three operations are shown below:
1018

1019 1020 1021
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
1022

1023
            Where ``n`` is the multiplication of each element in  ``s`` .
1024 1025 1026
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
1027

1028
    Returns:
1029 1030 1031 1032 1033
        out(Tensor): The result of the real 2-D FFT.

    Examples:

    .. code-block:: python
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        import paddle
        import numpy as np

        x = paddle.to_tensor(np.mgrid[:5, :5][0].astype(np.float32))
        print(paddle.fft.rfft2(x))
        # Tensor(shape=[5, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[ (50+0j)                                        ,  (1.1920928955078125e-07+0j)                    ,  0j                                             ],
        #         [(-12.5+17.204774856567383j)                     , (-9.644234211236835e-08+7.006946134424652e-08j) ,  0j                                             ],
        #         [(-12.500000953674316+4.061495304107666j)        , (3.6837697336977726e-08-1.1337477445749755e-07j),  0j                                             ],
        #         [(-12.500000953674316-4.061495304107666j)        , (3.6837697336977726e-08+1.1337477445749755e-07j),  0j                                             ],
        #         [(-12.5-17.204774856567383j)                     , (-9.644234211236835e-08-7.006946134424652e-08j) ,  0j                                             ]])
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1051 1052 1053 1054
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1055 1056 1057
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1058 1059 1060 1061
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    return rfftn(x, s, axes, norm, name)


def irfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Computes the inverse of `rfft2`.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output to the inverse FFT. Default is None.
1072 1073
        axes (sequence of ints, optional): The axes over which to compute the inverse FFT. Axes
            must be two-dimensional. If not specified, the last two axes are used by default.
1074
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
1075 1076
            pair and what normalization factor to use. The parameter value must be one
            of "forward" or "backward" or "ortho". Default is "backward". The details of
1077
            three operations are shown below:
1078

1079 1080 1081
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
1082

1083
            Where ``n`` is the multiplication of each element in  ``s`` .
1084 1085 1086
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .

1087 1088
    Returns:
        Real tensor. The result of the inverse real 2-D FFT.
1089

1090 1091 1092 1093 1094 1095
    Examples:

        .. code-block:: python

            import paddle

1096 1097 1098 1099 1100 1101
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            irfft2_x = paddle.fft.irfft2(x)
            print(irfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 2.37500000, -1.12500000,  0.37500000,  0.87500000],
            #         [ 0.12500000,  0.12500000,  0.12500000,  0.12500000]])
1102 1103 1104 1105 1106
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1107 1108 1109 1110
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1111 1112 1113
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1114 1115 1116 1117
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    return irfftn(x, s, axes, norm, name)


def hfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D FFT of a Hermitian complex array.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output. Default is None.
1128 1129
        axes (sequence of ints, optional):  Axes over which to compute the FFT. Axes must be
            two-dimensional. If not specified, the last two axes are used by default.
1130
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
1131
            pair and what normalization factor to use. The parameter value must be one
1132
            of "forward" or "backward" or "ortho". Default is "backward".
1133 1134 1135
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

1136 1137
    Returns:
        Real tensor. The real result of the 2-D Hermitian complex real FFT.
1138

1139 1140 1141 1142 1143 1144
    Examples:

        .. code-block:: python

            import paddle

1145 1146 1147 1148 1149 1150
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            hfft2_x = paddle.fft.hfft2(x)
            print(hfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[19.,  7.,  3., -9.],
            #         [ 1.,  1.,  1.,  1.]])
1151 1152 1153 1154 1155
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1156 1157 1158 1159
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1160 1161 1162
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1163 1164 1165 1166
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    return hfftn(x, s, axes, norm, name)


def ihfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the two dimensional inverse FFT of a real spectrum.

    This is really `ihfftn` with different defaults.
    For more details see `ihfftn`.

    Args:
1178
        x(Tensor): Input tensor.
1179
        s(Sequence[int], optional): Shape of the real input to the inverse FFT.
1180
        axes(Sequance[int], optional): The axes over which to compute the
1181
            inverse fft. Default is the last two axes.
1182
        norm(str, optional): {"backward", "ortho", "forward"}. Default is
1183
            "backward".
1184 1185 1186
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

    Returns:
        out(Tensor) : The result of the inverse hermitian 2-D FFT.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:5, :5][0].astype(np.float64)
            xp = paddle.to_tensor(x)
            ihfft2_xp = paddle.fft.ihfft2(xp).numpy()
            print(ihfft2_xp)
            # [[ 2. +0.j          0. +0.j          0. +0.j        ]
            #  [-0.5-0.68819096j  0. +0.j          0. +0.j        ]
            #  [-0.5-0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.68819096j  0. +0.j          0. +0.j        ]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1212 1213 1214 1215
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1216 1217 1218
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1219 1220 1221 1222
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    return ihfftn(x, s, axes, norm, name)


# public APIs utilities
def fftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
1243
        name (str, optional): The default value is None.  Normally there is no need for user to set
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length 'n' containing the sampling frequency.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            scalar_temp = 0.5
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=scalar_temp)
            print(fftfreq_xp)

            #  Tensor(shape=[5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [ 0.        ,  0.40000001,  0.80000001, -0.80000001, -0.40000001])
    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = (n + 1) // 2
    neg_max = n // 2
    indices = paddle.arange(-neg_max, pos_max, dtype=dtype, name=name)
    indices = paddle.roll(indices, -neg_max, name=name)
    return indices * val


def rfftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

1279 1280
    The returned floating-point array "F" contains the center of the frequency unit,
    and the unit is the number of cycles of the sampling interval (the starting point is zero).
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    the Nyquist frequency component is considered to be positive.

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
1292
        dtype (str, optional): The data type of returns. Defaults is the data type of returns
1293
            of ``paddle.get_default_dtype()``.
1294
        name (str, optional): The default value is None.  Normally there is no need for user to set
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length ``n//2 + 1`` containing the sample frequencies.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            scalar_temp = 0.3
            n = x.size
            rfftfreq_xp = paddle.fft.rfftfreq(n, d=scalar_temp)
            print(rfftfreq_xp)

            #  Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [0.        , 0.66666669, 1.33333337])

    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = 1 + n // 2
    indices = paddle.arange(0, pos_max, dtype=dtype, name=name)
    return indices * val


def fftshift(x, axes=None, name=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half spaces for all the axes listed (all by default).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
1336
        name (str, optional): The default value is None.  Normally there is no need for user to set
1337 1338 1339 1340
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
            res = paddle.fft.fftshift(fftfreq_xp).numpy()
            print(res)
            #  [-1.3333334 -0.6666667  0.         0.6666667  1.3333334]

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1360 1361 1362
        rank = len(x.shape)
        axes = list(range(0, rank))
        shifts = shape // 2
1363 1364 1365
    elif isinstance(axes, int):
        shifts = shape[axes] // 2
    else:
1366
        shifts = paddle.concat([shape[ax] // 2 for ax in axes])
1367 1368 1369 1370 1371
    return paddle.roll(x, shifts, axes, name=name)


def ifftshift(x, axes=None, name=None):
    """
1372
    The inverse of `fftshift`. Although the even length 'x' is the same, the function of the
1373 1374 1375 1376 1377 1378
    odd length 'x' is different. An example.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
1379
        name (str, optional): The default value is None.  Normally there is no need for user to set
1380 1381 1382 1383
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
            res = paddle.fft.ifftshift(fftfreq_xp).numpy()
            print(res)
            #  [ 1.3333334 -1.3333334 -0.6666667  0.         0.6666667]

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1403 1404
        rank = len(x.shape)
        axes = list(range(0, rank))
1405
        shifts = -shape // 2
1406 1407 1408
    elif isinstance(axes, int):
        shifts = -shape[axes] // 2
    else:
1409
        shifts = paddle.concat([-shape[ax] // 2 for ax in axes])
1410 1411 1412 1413 1414
    return paddle.roll(x, shifts, axes, name=name)


# internal functions
def fft_c2c(x, n, axis, norm, forward, name):
1415
    if is_integer(x):
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)

    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)
F
Feiyu Chan 已提交
1432
    if in_dygraph_mode():
1433
        out = _C_ops.fft_c2c(x, axes, norm, forward)
F
Feiyu Chan 已提交
1434
    elif _in_legacy_dygraph():
1435
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1436
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1437
    else:
1438 1439 1440
        inputs = {
            'X': [x],
        }
1441 1442 1443 1444 1445
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1446 1447 1448
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1449 1450 1451 1452
    return out


def fft_r2c(x, n, axis, norm, forward, onesided, name):
1453
    if is_integer(x):
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1467
    if in_dygraph_mode():
1468
        out = _C_ops.fft_r2c(x, axes, norm, forward, onesided)
F
Feiyu Chan 已提交
1469
    elif _in_legacy_dygraph():
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
        attrs = (
            'axes',
            axes,
            'normalization',
            norm,
            'forward',
            forward,
            'onesided',
            onesided,
        )
1480
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1481
    else:
1482 1483 1484
        inputs = {
            'X': [x],
        }
1485 1486 1487 1488 1489 1490 1491 1492 1493
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1494 1495
            _real_to_complex_dtype(dtype)
        )
1496
        outputs = {"Out": [out]}
1497 1498 1499
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1500 1501 1502 1503
    return out


def fft_c2r(x, n, axis, norm, forward, name):
1504
    if is_integer(x):
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n // 2 + 1]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1520 1521
    if in_dygraph_mode():
        if n is not None:
1522
            out = _C_ops.fft_c2r(x, axes, norm, forward, n)
F
Feiyu Chan 已提交
1523
        else:
1524
            out = _C_ops.fft_c2r(x, axes, norm, forward, 0)
F
Feiyu Chan 已提交
1525
    elif _in_legacy_dygraph():
1526
        if n is not None:
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
            attrs = (
                'axes',
                axes,
                'normalization',
                norm,
                'forward',
                forward,
                'last_dim_size',
                n,
            )
1537 1538
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1539
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1540
    else:
1541 1542 1543
        inputs = {
            'X': [x],
        }
1544 1545 1546 1547 1548 1549
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if n is not None:
            attrs['last_dim_size'] = n
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1550 1551
            _complex_to_real_dtype(dtype)
        )
1552
        outputs = {"Out": [out]}
1553 1554 1555
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1556 1557 1558 1559
    return out


def fftn_c2c(x, s, axes, norm, forward, name):
1560
    if is_integer(x):
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes).tolist()
        axes = [axes[i] for i in axes_argsoft]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1583 1584 1585 1586
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1587 1588 1589 1590 1591 1592 1593
            s = [s[i] for i in axes_argsoft]

    if s is not None:
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1594
    if in_dygraph_mode():
1595
        out = _C_ops.fft_c2c(x, axes, norm, forward)
F
Feiyu Chan 已提交
1596
    elif _in_legacy_dygraph():
1597
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1598
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1599
    else:
1600 1601 1602
        inputs = {
            'X': [x],
        }
1603 1604 1605 1606 1607
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1608 1609 1610
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1611 1612 1613 1614
    return out


def fftn_r2c(x, s, axes, norm, forward, onesided, name):
1615
    if is_integer(x):
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1636 1637 1638 1639
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1640 1641 1642 1643 1644 1645 1646 1647
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        x = _resize_fft_input(x, s, axes)

    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1648
    if in_dygraph_mode():
1649
        out = _C_ops.fft_r2c(x, axes, norm, forward, onesided)
F
Feiyu Chan 已提交
1650
    elif _in_legacy_dygraph():
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
        attrs = (
            'axes',
            axes,
            'normalization',
            norm,
            'forward',
            forward,
            'onesided',
            onesided,
        )
1661
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1662
    else:
1663 1664 1665
        inputs = {
            'X': [x],
        }
1666 1667 1668 1669 1670 1671 1672 1673 1674
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1675 1676
            _real_to_complex_dtype(dtype)
        )
1677
        outputs = {"Out": [out]}
1678 1679 1680
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1681 1682 1683 1684 1685

    return out


def fftn_c2r(x, s, axes, norm, forward, name):
1686
    if is_integer(x):
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1709 1710 1711 1712
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        fft_input_shape = list(s)
        fft_input_shape[-1] = fft_input_shape[-1] // 2 + 1
        x = _resize_fft_input(x, fft_input_shape, axes)

    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1723 1724
    if in_dygraph_mode():
        if s is not None:
1725
            out = _C_ops.fft_c2r(x, axes, norm, forward, s[-1])
F
Feiyu Chan 已提交
1726
        else:
1727
            out = _C_ops.fft_c2r(x, axes, norm, forward, 0)
F
Feiyu Chan 已提交
1728
    elif _in_legacy_dygraph():
1729
        if s:
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
            attrs = (
                'axes',
                axes,
                'normalization',
                norm,
                'forward',
                forward,
                'last_dim_size',
                s[-1],
            )
1740 1741
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1742
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1743
    else:
1744 1745 1746
        inputs = {
            'X': [x],
        }
1747 1748 1749 1750 1751 1752
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if s:
            attrs["last_dim_size"] = s[-1]
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1753 1754
            _complex_to_real_dtype(dtype)
        )
1755
        outputs = {"Out": [out]}
1756 1757 1758
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1759
    return out