unsqueeze_op.cc 17.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/unsqueeze_op.h"
16

17
#include <memory>
18 19
#include <string>
#include <vector>
20

21
#include "paddle/fluid/framework/op_registry.h"
22 23 24 25

namespace paddle {
namespace operators {

26
class UnsqueezeOp : public framework::OperatorWithKernel {
27
 public:
28 29 30 31
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
32 33 34
                      platform::errors::InvalidArgument(
                          "Input(X) of "
                          "Unsqueeze operator should not be null."));
35
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
36 37 38
                      platform::errors::InvalidArgument(
                          "Output(Out) of "
                          "Unsqueeze operator should not be null."));
39

40 41
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
42
    // Validity Check: input tensor dims (<6).
43
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
44 45 46 47
                      platform::errors::InvalidArgument(
                          "Invalid "
                          "dimensions, the rank of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)"));
48 49 50 51 52 53 54 55 56 57 58 59
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
60 61
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
62 63 64 65
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
66 67 68 69 70 71 72 73 74 75 76 77 78
      PADDLE_ENFORCE_EQ(axes_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "Input(AxesTensor)'s dimension of "
                            "Op(unsqueeze) must be 1. "
                            "But received AxesTensor's shape = [%s], "
                            "AxesTensor's dimension = %d.",
                            axes_dims, axes_dims.size()));
      PADDLE_ENFORCE_GE(
          axes_dims[0], 0,
          platform::errors::InvalidArgument(
              "Input(AxesTensor)'s shape must be known. But received "
              "AxesTensor's shape = [%s]",
              axes_dims));
79 80
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
81 82
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
83 84
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
85
    }
86 87
  }

88
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
89
                                        const framework::DDim &in_dims) {
90 91
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
92 93 94
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
95
    PADDLE_ENFORCE_LE(output_size, 6,
96 97
                      platform::errors::InvalidArgument(
                          "The output tensor's rank should be less than 6."));
98 99

    for (int axis : unsqz_dims) {
100
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
101
      // Vaildity Check: the axis bound
102 103 104 105 106 107 108
      PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
                                    "The insert dimension value should "
                                    "not be less than 0"));
      PADDLE_ENFORCE_LE(cur, cur_output_size,
                        platform::errors::InvalidArgument(
                            "The insert dimension value shoud not be larger "
                            "than the dimension size of input tensor"));
109 110 111 112 113 114 115 116 117
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
118
      // Add the output size.
119
      cur_output_size++;
120 121
    }

122
    // Make output shape
123 124
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
125 126 127 128 129 130
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
148 149 150 151 152 153
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
154 155 156 157 158 159 160 161 162 163 164
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
165 166
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
167
                              "(std::vector<int>). List of integers,"
168
                              " indicating the dimensions to be inserted")
169
        .SetDefault({})
170 171
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
172
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
173 174 175 176
                            platform::errors::InvalidArgument(
                                "Invalid "
                                "dimensions, dynamic dimensions should be "
                                "within [1, 6] dimensions (Eigen limit)."));
T
tianshuo78520a 已提交
177
          // Validity Check: the range of unsqueeze axis.
178
          for (int axis : axes) {
179
            PADDLE_ENFORCE_LT(axis, 6,
180 181 182 183
                              platform::errors::InvalidArgument(
                                  "Invalid "
                                  "dimensions, input axis should be"
                                  "within [1, 6] dimensions (Eigen limit)."));
184 185
          }
        });
186
    AddComment(R"DOC(
187 188
    Unsqueeze Operator.

189 190 191 192 193 194
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
195
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
196 197 198 199
    )DOC");
  }
};

200
class UnsqueezeGradOp : public framework::OperatorWithKernel {
201
 public:
202 203 204
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
205
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
206
    ctx->ShareLoD("X", framework::GradVarName("X"));
207
  }
208 209 210 211 212 213 214 215 216 217 218 219 220 221

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

222
  void Apply(GradOpPtr<T> grad_op) const override {
223 224 225 226 227 228
    grad_op->SetType("unsqueeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
229
};
230

231 232 233 234 235 236 237 238 239 240 241 242 243
template <typename T>
class UnsqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

244 245 246 247 248
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
249
class Unsqueeze2Op : public UnsqueezeOp {
250
 public:
251
  using UnsqueezeOp::UnsqueezeOp;
252
  void InferShape(framework::InferShapeContext *ctx) const override {
253
    UnsqueezeOp::InferShape(ctx);
254
    const auto &x_dims = ctx->GetInputDim("X");
255

256
    if (!ctx->HasOutput("XShape")) return;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
274 275
        .AsIntermediate()
        .AsExtra();
276 277 278
  }
};

H
hong 已提交
279 280
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
281
 public:
H
hong 已提交
282
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
283

284
  void Apply(GradOpPtr<T> grad_op) const override {
285
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
286 287 288 289
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
290 291 292
  }
};

293
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
294
 public:
295 296
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
297 298 299
    PADDLE_ENFORCE_EQ(
        context->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
300
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
301 302
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
303 304 305 306 307 308
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

309 310 311
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
312 313 314
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
315 316
  }
};
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331
template <typename T>
class Unsqueeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

332 333 334 335
DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
336
DECLARE_NO_NEED_BUFFER_VARS_INFERER(UnsqueezeGradOpNoNeedBufferVarInferer, "X");
337 338 339 340
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
341 342 343 344
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
345 346
                  ops::UnsqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
347
                  ops::UnsqueezeGradOpNoNeedBufferVarInferer);
348 349

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
350 351 352
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeInplaceInferer);
353
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
354 355
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
356
                  ops::UnsqueezeGradInplaceInferer);
357 358 359 360

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
361
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
362
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
363
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
364
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
365 366 367 368 369
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex<float>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex<double>>);
370 371 372 373
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
374
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
375
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
376
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
377
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
378 379 380 381 382
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex<float>>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex<double>>);
383
REGISTER_OP_CPU_KERNEL(
384 385
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
386
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
387
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
388
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
389
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
390 391 392 393 394
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex<float>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex<double>>);
395 396 397 398
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
399
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, bool>,
400
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
401
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
402
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
403 404 405 406 407
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::complex<float>>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::complex<double>>);