nan_inf_utils_detail.h 12.8 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16 17
#include <fstream>
#include <iostream>
W
WangXi 已提交
18
#include <string>
19
#include "paddle/fluid/framework/tensor.h"
L
Leo Chen 已提交
20
#include "paddle/fluid/platform/complex.h"
W
WangXi 已提交
21
#include "paddle/fluid/platform/place.h"
22
#include "paddle/phi/common/amp_type_traits.h"
23
#include "paddle/phi/core/flags.h"
24 25 26 27 28 29 30 31 32
#include "paddle/phi/kernels/funcs/eigen/extensions.h"
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#define MKDIR(path) _mkdir(path)
#else
#include <sys/stat.h>
#define MKDIR(path) mkdir(path, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH)
#endif
W
WangXi 已提交
33

34
PHI_DECLARE_int32(check_nan_inf_level);
W
WangXi 已提交
35 36 37 38
namespace paddle {
namespace framework {
namespace details {

39 40 41 42
void SetNanInfDebugPath(const std::string& nan_inf_path);

std::string GetNanPath();

43 44 45 46
void SetNanInfStackLimit(const int& stack_limit);

int GetNanInfStackLimit();

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename T,
          typename MT,
          std::enable_if_t<std::is_same<T, float>::value, bool> = true>
HOSTDEVICE bool NeedPrint(MT max_value, MT min_value, int check_nan_inf_level) {
  if (check_nan_inf_level >= 3) {
    return true;
  } else if (check_nan_inf_level >= 2) {
    MT fp16_max =
        static_cast<MT>(std::numeric_limits<phi::dtype::float16>::max());
    return max_value > fp16_max || min_value < -fp16_max;
  }
  return false;
}

template <typename T,
          typename MT,
          std::enable_if_t<!std::is_same<T, float>::value, bool> = true>
64 65 66
HOSTDEVICE bool NeedPrint(MT max_value UNUSED,
                          MT min_value UNUSED,
                          int check_nan_inf_level) {
67 68 69 70 71 72 73 74 75 76 77
  if (check_nan_inf_level >= 3) {
    return true;
  }
  return false;
}

template <typename T, typename MT>
HOSTDEVICE void PrintForDifferentLevel(const char* debug_info,
                                       int64_t numel,
                                       int64_t num_nan,
                                       int64_t num_inf,
78
                                       int64_t num_zero,
79 80 81 82 83 84 85
                                       MT max_value,
                                       MT min_value,
                                       MT mean_value,
                                       int check_nan_inf_level) {
  if (num_nan > 0 || num_inf > 0) {
    printf(
        "[PRECISION] [ERROR] in %s, numel=%lld, num_nan=%lld, "
86
        "num_inf=%lld, num_zero=%lld, max=%e, min=%e, mean=%e\n",
87
        debug_info,
88 89 90 91
        static_cast<long long>(numel),     // NOLINT
        static_cast<long long>(num_nan),   // NOLINT
        static_cast<long long>(num_inf),   // NOLINT
        static_cast<long long>(num_zero),  // NOLINT
92 93 94 95
        static_cast<float>(max_value),
        static_cast<float>(min_value),
        static_cast<float>(mean_value));
    if (check_nan_inf_level == 0) {
96
#if !(defined(__NVCC__) || defined(__HIPCC__))
97
      PADDLE_THROW(platform::errors::PreconditionNotMet(
98 99 100 101 102
          "There are NAN or INF (num_nan=%lld, num_inf=%lld, num_zero=%lld) in "
          "%s.",
          static_cast<long long>(num_nan),   // NOLINT
          static_cast<long long>(num_inf),   // NOLINT
          static_cast<long long>(num_zero),  // NOLINT
103 104 105 106
          debug_info));
#endif
    }
  } else if (NeedPrint<T, MT>(max_value, min_value, check_nan_inf_level)) {
107 108 109 110 111 112 113 114 115
    printf(
        "[PRECISION] in %s, numel=%lld, num_zero=%lld, max=%e, min=%e, "
        "mean=%e\n",
        debug_info,
        static_cast<long long>(numel),     // NOLINT
        static_cast<long long>(num_zero),  // NOLINT
        static_cast<float>(max_value),
        static_cast<float>(min_value),
        static_cast<float>(mean_value));
116 117 118
  }
}

119 120 121 122 123
template <typename T, typename MT>
void PrintForDifferentLevelFile(const char* debug_info,
                                int64_t numel,
                                int64_t num_nan,
                                int64_t num_inf,
124
                                int64_t num_zero,
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                                MT max_value,
                                MT min_value,
                                MT mean_value,
                                int check_nan_inf_level,
                                const std::string& log_name) {
  int dev_id = 0;
#ifdef PADDLE_WITH_HIP
  hipGetDevice(&dev_id);
#elif PADDLE_WITH_CUDA
  cudaGetDevice(&dev_id);
#endif
  auto file_path = GetNanPath();
  MKDIR(file_path.c_str());
  std::string file_name = "worker_" + log_name + "." + std::to_string(dev_id);
  std::string path = file_path + file_name;
  std::ofstream outfile(path, std::ios::app);
  if (!outfile.is_open()) {
    return;
  }

  if (num_nan > 0 || num_inf > 0) {
    outfile << "[PRECISION] [ERROR] in " << debug_info
147 148 149 150
            << ", numel=" << static_cast<long long>(numel)        // NOLINT
            << ", num_nan=" << static_cast<long long>(num_nan)    // NOLINT
            << ", num_inf=" << static_cast<long long>(num_inf)    // NOLINT
            << ", num_zero=" << static_cast<long long>(num_zero)  // NOLINT
151 152 153 154 155
            << ", max=" << static_cast<float>(max_value)
            << ", min=" << static_cast<float>(min_value)
            << ", mean=" << static_cast<float>(mean_value) << std::endl;
  } else if (NeedPrint<T, MT>(max_value, min_value, check_nan_inf_level)) {
    outfile << "[PRECISION] in " << debug_info
156 157
            << ", numel=" << static_cast<long long>(numel)        // NOLINT
            << ", num_zero=" << static_cast<long long>(num_zero)  // NOLINT
158 159 160 161 162 163 164
            << ", max=" << static_cast<float>(max_value)
            << ", min=" << static_cast<float>(min_value)
            << ", mean=" << static_cast<float>(mean_value) << std::endl;
  }
  outfile.close();
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
template <typename T>
inline std::string GetCpuHintString(const std::string& op_type,
                                    const std::string& var_name,
                                    const phi::Place& place,
                                    int device_id = -1) {
  std::string dtype_str = DataTypeToString(DataTypeTrait<T>::DataType());
  if (dtype_str == "float") {
    dtype_str = "fp32";
  } else if (dtype_str == "double") {
    dtype_str = "fp64";
  } else if (dtype_str == "::paddle::platform::float16") {
    dtype_str = "fp16";
  } else if (dtype_str == "::paddle::platform::bfloat16") {
    dtype_str = "bf16";
  }

  std::stringstream ss;
  if (platform::is_gpu_place(place)) {
    ss << "[device=gpu:" << device_id << ", ";
  } else {
    ss << "[device=cpu, ";
  }
  ss << "op=" << op_type << ", tensor=" << var_name << ", dtype=" << dtype_str
     << "]";
  return ss.str();
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
template <
    typename T,
    std::enable_if_t<!std::is_same<T, phi::dtype::complex<float>>::value &&
                         !std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
static void CheckNanInfCpuImpl(const T* value_ptr,
                               const int64_t numel,
                               const std::string& cpu_hint_str,
                               const std::string log_name = "cpu") {
  using MT = typename phi::dtype::template MPTypeTrait<T>::Type;

#ifdef _OPENMP
  // Use maximum 4 threads to collect the nan and inf information.
  int num_threads = std::max(omp_get_num_threads(), 1);
  num_threads = std::min(num_threads, 4);
#else
  int num_threads = 1;
#endif

  std::vector<int64_t> thread_num_nan(num_threads, 0);
  std::vector<int64_t> thread_num_inf(num_threads, 0);
213
  std::vector<int64_t> thread_num_zero(num_threads, 0);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  std::vector<MT> thread_min_value(num_threads, static_cast<MT>(value_ptr[0]));
  std::vector<MT> thread_max_value(num_threads, static_cast<MT>(value_ptr[0]));
  std::vector<MT> thread_mean_value(num_threads, static_cast<MT>(0));

#ifdef _OPENMP
#pragma omp parallel num_threads(num_threads)
#endif
  {
#ifdef _OPENMP
    int64_t tid = omp_get_thread_num();
    int64_t chunk_size = (numel + num_threads - 1) / num_threads;
    int64_t begin = tid * chunk_size;
    int64_t end = chunk_size + begin > numel ? numel : chunk_size + begin;
#else
    int64_t tid = 0;
    int64_t begin = 0;
    int64_t end = numel;
#endif
    for (int64_t i = begin; i < end; ++i) {
      MT value = static_cast<MT>(value_ptr[i]);

      thread_min_value[tid] = std::min(thread_min_value[tid], value);
      thread_max_value[tid] = std::max(thread_max_value[tid], value);
      thread_mean_value[tid] += value / static_cast<MT>(numel);

      if (std::isnan(value)) {
        thread_num_nan[tid] += 1;
      } else if (std::isinf(value)) {
        thread_num_inf[tid] += 1;
      }
244 245 246
      if (value == 0) {
        thread_num_zero[tid] += 1;
      }
247 248 249 250 251
    }
  }

  int64_t num_nan = 0;
  int64_t num_inf = 0;
252
  int64_t num_zero = 0;
253 254 255 256 257 258
  MT min_value = thread_min_value[0];
  MT max_value = thread_max_value[0];
  MT mean_value = static_cast<MT>(0);
  for (int i = 0; i < num_threads; ++i) {
    num_nan += thread_num_nan[i];
    num_inf += thread_num_inf[i];
259
    num_zero += thread_num_zero[i];
260 261 262 263 264 265 266 267 268 269 270 271 272
    min_value = std::min(thread_min_value[i], min_value);
    max_value = std::max(thread_max_value[i], max_value);
    mean_value += thread_mean_value[i];
  }
  auto file_path = GetNanPath();
  // Write log to file
  if (file_path.size() > 0) {
    VLOG(4) << "[FLAGS_check_nan_inf_level=" << FLAGS_check_nan_inf_level
            << "]. Write log to " << file_path;
    PrintForDifferentLevelFile<T, MT>(cpu_hint_str.c_str(),
                                      numel,
                                      num_nan,
                                      num_inf,
273
                                      num_zero,
274 275 276 277 278 279 280 281 282 283 284 285
                                      max_value,
                                      min_value,
                                      mean_value,
                                      FLAGS_check_nan_inf_level,
                                      log_name);
    return;
  }

  PrintForDifferentLevel<T, MT>(cpu_hint_str.c_str(),
                                numel,
                                num_nan,
                                num_inf,
286
                                num_zero,
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                                max_value,
                                min_value,
                                mean_value,
                                FLAGS_check_nan_inf_level);
}

template <
    typename T,
    std::enable_if_t<std::is_same<T, phi::dtype::complex<float>>::value ||
                         std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
void CheckNanInfCpuImpl(const T* value_ptr,
                        const int64_t numel,
                        const std::string& cpu_hint_str,
                        const std::string log_name = "cpu") {
  using RealType = typename T::value_type;

  RealType real_sum = 0.0f, imag_sum = 0.0f;

#ifdef _OPENMP
#pragma omp parallel for reduction(+ : real_sum) reduction(+ : imag_sum)
#endif
  for (int64_t i = 0; i < numel; ++i) {
    T value = value_ptr[i];
    real_sum += (value.real - value.real);
    imag_sum += (value.imag - value.imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are NAN or INF in %s.", cpu_hint_str));
  }
}

W
WangXi 已提交
324 325
template <typename DeviceContext>
struct TensorCheckerVisitor {
326 327 328 329 330
  TensorCheckerVisitor(const std::string& o,
                       const std::string& v,
                       const phi::DenseTensor& t,
                       const platform::Place& p)
      : op_type(o), var_name(v), tensor(t), place(p) {}
W
WangXi 已提交
331 332 333 334

  template <typename T>
  void apply(
      typename std::enable_if<std::is_integral<T>::value>::type* = 0) const {
335
    VLOG(10) << var_name << " need not to check, it's type is not float point";
W
WangXi 已提交
336 337 338
  }

  template <typename T>
339 340 341 342 343 344
  void apply(
      typename std::enable_if<
          std::is_floating_point<T>::value ||
          std::is_same<T, ::paddle::platform::complex<float>>::value ||
          std::is_same<T, ::paddle::platform::complex<double>>::value>::type* =
          0) const;
W
WangXi 已提交
345

346 347 348 349
  std::string op_type;
  std::string var_name;
  const phi::DenseTensor& tensor;
  const platform::Place& place;
W
WangXi 已提交
350 351 352
};

template <typename DeviceContext>
353 354
void tensor_check(const std::string& op_type,
                  const std::string& var_name,
355
                  const phi::DenseTensor& tensor,
W
WangXi 已提交
356 357 358 359 360
                  const platform::Place& place);

}  // namespace details
}  // namespace framework
}  // namespace paddle