nan_inf_utils_detail.h 12.6 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16 17
#include <fstream>
#include <iostream>
W
WangXi 已提交
18
#include <string>
19
#include "paddle/fluid/framework/tensor.h"
L
Leo Chen 已提交
20
#include "paddle/fluid/platform/complex.h"
W
WangXi 已提交
21
#include "paddle/fluid/platform/place.h"
22 23 24 25 26 27 28 29 30 31 32
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/funcs/eigen/extensions.h"

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#define MKDIR(path) _mkdir(path)
#else
#include <sys/stat.h>
#define MKDIR(path) mkdir(path, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH)
#endif
W
WangXi 已提交
33

34
DECLARE_int32(check_nan_inf_level);
W
WangXi 已提交
35 36 37 38
namespace paddle {
namespace framework {
namespace details {

39 40 41 42
void SetNanInfDebugPath(const std::string& nan_inf_path);

std::string GetNanPath();

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
template <typename T,
          typename MT,
          std::enable_if_t<std::is_same<T, float>::value, bool> = true>
HOSTDEVICE bool NeedPrint(MT max_value, MT min_value, int check_nan_inf_level) {
  if (check_nan_inf_level >= 3) {
    return true;
  } else if (check_nan_inf_level >= 2) {
    MT fp16_max =
        static_cast<MT>(std::numeric_limits<phi::dtype::float16>::max());
    return max_value > fp16_max || min_value < -fp16_max;
  }
  return false;
}

template <typename T,
          typename MT,
          std::enable_if_t<!std::is_same<T, float>::value, bool> = true>
HOSTDEVICE bool NeedPrint(MT max_value, MT min_value, int check_nan_inf_level) {
  if (check_nan_inf_level >= 3) {
    return true;
  }
  return false;
}

template <typename T, typename MT>
HOSTDEVICE void PrintForDifferentLevel(const char* debug_info,
                                       int64_t numel,
                                       int64_t num_nan,
                                       int64_t num_inf,
72
                                       int64_t num_zero,
73 74 75 76 77 78 79
                                       MT max_value,
                                       MT min_value,
                                       MT mean_value,
                                       int check_nan_inf_level) {
  if (num_nan > 0 || num_inf > 0) {
    printf(
        "[PRECISION] [ERROR] in %s, numel=%lld, num_nan=%lld, "
80
        "num_inf=%lld, num_zero=%lld, max=%e, min=%e, mean=%e\n",
81
        debug_info,
82 83 84 85
        static_cast<long long>(numel),     // NOLINT
        static_cast<long long>(num_nan),   // NOLINT
        static_cast<long long>(num_inf),   // NOLINT
        static_cast<long long>(num_zero),  // NOLINT
86 87 88 89
        static_cast<float>(max_value),
        static_cast<float>(min_value),
        static_cast<float>(mean_value));
    if (check_nan_inf_level == 0) {
90
#if !(defined(__NVCC__) || defined(__HIPCC__))
91
      PADDLE_THROW(platform::errors::PreconditionNotMet(
92 93 94 95 96
          "There are NAN or INF (num_nan=%lld, num_inf=%lld, num_zero=%lld) in "
          "%s.",
          static_cast<long long>(num_nan),   // NOLINT
          static_cast<long long>(num_inf),   // NOLINT
          static_cast<long long>(num_zero),  // NOLINT
97 98 99 100
          debug_info));
#endif
    }
  } else if (NeedPrint<T, MT>(max_value, min_value, check_nan_inf_level)) {
101 102 103 104 105 106 107 108 109
    printf(
        "[PRECISION] in %s, numel=%lld, num_zero=%lld, max=%e, min=%e, "
        "mean=%e\n",
        debug_info,
        static_cast<long long>(numel),     // NOLINT
        static_cast<long long>(num_zero),  // NOLINT
        static_cast<float>(max_value),
        static_cast<float>(min_value),
        static_cast<float>(mean_value));
110 111 112
  }
}

113 114 115 116 117
template <typename T, typename MT>
void PrintForDifferentLevelFile(const char* debug_info,
                                int64_t numel,
                                int64_t num_nan,
                                int64_t num_inf,
118
                                int64_t num_zero,
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                                MT max_value,
                                MT min_value,
                                MT mean_value,
                                int check_nan_inf_level,
                                const std::string& log_name) {
  int dev_id = 0;
#ifdef PADDLE_WITH_HIP
  hipGetDevice(&dev_id);
#elif PADDLE_WITH_CUDA
  cudaGetDevice(&dev_id);
#endif
  auto file_path = GetNanPath();
  MKDIR(file_path.c_str());
  std::string file_name = "worker_" + log_name + "." + std::to_string(dev_id);
  std::string path = file_path + file_name;
  std::ofstream outfile(path, std::ios::app);
  if (!outfile.is_open()) {
    return;
  }

  if (num_nan > 0 || num_inf > 0) {
    outfile << "[PRECISION] [ERROR] in " << debug_info
141 142 143 144
            << ", numel=" << static_cast<long long>(numel)        // NOLINT
            << ", num_nan=" << static_cast<long long>(num_nan)    // NOLINT
            << ", num_inf=" << static_cast<long long>(num_inf)    // NOLINT
            << ", num_zero=" << static_cast<long long>(num_zero)  // NOLINT
145 146 147 148 149
            << ", max=" << static_cast<float>(max_value)
            << ", min=" << static_cast<float>(min_value)
            << ", mean=" << static_cast<float>(mean_value) << std::endl;
  } else if (NeedPrint<T, MT>(max_value, min_value, check_nan_inf_level)) {
    outfile << "[PRECISION] in " << debug_info
150 151
            << ", numel=" << static_cast<long long>(numel)        // NOLINT
            << ", num_zero=" << static_cast<long long>(num_zero)  // NOLINT
152 153 154 155 156 157 158
            << ", max=" << static_cast<float>(max_value)
            << ", min=" << static_cast<float>(min_value)
            << ", mean=" << static_cast<float>(mean_value) << std::endl;
  }
  outfile.close();
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
template <typename T>
inline std::string GetCpuHintString(const std::string& op_type,
                                    const std::string& var_name,
                                    const phi::Place& place,
                                    int device_id = -1) {
  std::string dtype_str = DataTypeToString(DataTypeTrait<T>::DataType());
  if (dtype_str == "float") {
    dtype_str = "fp32";
  } else if (dtype_str == "double") {
    dtype_str = "fp64";
  } else if (dtype_str == "::paddle::platform::float16") {
    dtype_str = "fp16";
  } else if (dtype_str == "::paddle::platform::bfloat16") {
    dtype_str = "bf16";
  }

  std::stringstream ss;
  if (platform::is_gpu_place(place)) {
    ss << "[device=gpu:" << device_id << ", ";
  } else {
    ss << "[device=cpu, ";
  }
  ss << "op=" << op_type << ", tensor=" << var_name << ", dtype=" << dtype_str
     << "]";
  return ss.str();
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
template <
    typename T,
    std::enable_if_t<!std::is_same<T, phi::dtype::complex<float>>::value &&
                         !std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
static void CheckNanInfCpuImpl(const T* value_ptr,
                               const int64_t numel,
                               const std::string& cpu_hint_str,
                               const std::string log_name = "cpu") {
  using MT = typename phi::dtype::template MPTypeTrait<T>::Type;

#ifdef _OPENMP
  // Use maximum 4 threads to collect the nan and inf information.
  int num_threads = std::max(omp_get_num_threads(), 1);
  num_threads = std::min(num_threads, 4);
#else
  int num_threads = 1;
#endif

  std::vector<int64_t> thread_num_nan(num_threads, 0);
  std::vector<int64_t> thread_num_inf(num_threads, 0);
207
  std::vector<int64_t> thread_num_zero(num_threads, 0);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  std::vector<MT> thread_min_value(num_threads, static_cast<MT>(value_ptr[0]));
  std::vector<MT> thread_max_value(num_threads, static_cast<MT>(value_ptr[0]));
  std::vector<MT> thread_mean_value(num_threads, static_cast<MT>(0));

#ifdef _OPENMP
#pragma omp parallel num_threads(num_threads)
#endif
  {
#ifdef _OPENMP
    int64_t tid = omp_get_thread_num();
    int64_t chunk_size = (numel + num_threads - 1) / num_threads;
    int64_t begin = tid * chunk_size;
    int64_t end = chunk_size + begin > numel ? numel : chunk_size + begin;
#else
    int64_t tid = 0;
    int64_t begin = 0;
    int64_t end = numel;
#endif
    for (int64_t i = begin; i < end; ++i) {
      MT value = static_cast<MT>(value_ptr[i]);

      thread_min_value[tid] = std::min(thread_min_value[tid], value);
      thread_max_value[tid] = std::max(thread_max_value[tid], value);
      thread_mean_value[tid] += value / static_cast<MT>(numel);

      if (std::isnan(value)) {
        thread_num_nan[tid] += 1;
      } else if (std::isinf(value)) {
        thread_num_inf[tid] += 1;
      }
238 239 240
      if (value == 0) {
        thread_num_zero[tid] += 1;
      }
241 242 243 244 245
    }
  }

  int64_t num_nan = 0;
  int64_t num_inf = 0;
246
  int64_t num_zero = 0;
247 248 249 250 251 252
  MT min_value = thread_min_value[0];
  MT max_value = thread_max_value[0];
  MT mean_value = static_cast<MT>(0);
  for (int i = 0; i < num_threads; ++i) {
    num_nan += thread_num_nan[i];
    num_inf += thread_num_inf[i];
253
    num_zero += thread_num_zero[i];
254 255 256 257 258 259 260 261 262 263 264 265 266
    min_value = std::min(thread_min_value[i], min_value);
    max_value = std::max(thread_max_value[i], max_value);
    mean_value += thread_mean_value[i];
  }
  auto file_path = GetNanPath();
  // Write log to file
  if (file_path.size() > 0) {
    VLOG(4) << "[FLAGS_check_nan_inf_level=" << FLAGS_check_nan_inf_level
            << "]. Write log to " << file_path;
    PrintForDifferentLevelFile<T, MT>(cpu_hint_str.c_str(),
                                      numel,
                                      num_nan,
                                      num_inf,
267
                                      num_zero,
268 269 270 271 272 273 274 275 276 277 278 279
                                      max_value,
                                      min_value,
                                      mean_value,
                                      FLAGS_check_nan_inf_level,
                                      log_name);
    return;
  }

  PrintForDifferentLevel<T, MT>(cpu_hint_str.c_str(),
                                numel,
                                num_nan,
                                num_inf,
280
                                num_zero,
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
                                max_value,
                                min_value,
                                mean_value,
                                FLAGS_check_nan_inf_level);
}

template <
    typename T,
    std::enable_if_t<std::is_same<T, phi::dtype::complex<float>>::value ||
                         std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
void CheckNanInfCpuImpl(const T* value_ptr,
                        const int64_t numel,
                        const std::string& cpu_hint_str,
                        const std::string log_name = "cpu") {
  using RealType = typename T::value_type;

  RealType real_sum = 0.0f, imag_sum = 0.0f;

#ifdef _OPENMP
#pragma omp parallel for reduction(+ : real_sum) reduction(+ : imag_sum)
#endif
  for (int64_t i = 0; i < numel; ++i) {
    T value = value_ptr[i];
    real_sum += (value.real - value.real);
    imag_sum += (value.imag - value.imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are NAN or INF in %s.", cpu_hint_str));
  }
}

W
WangXi 已提交
318 319
template <typename DeviceContext>
struct TensorCheckerVisitor {
320 321 322 323 324
  TensorCheckerVisitor(const std::string& o,
                       const std::string& v,
                       const phi::DenseTensor& t,
                       const platform::Place& p)
      : op_type(o), var_name(v), tensor(t), place(p) {}
W
WangXi 已提交
325 326 327 328

  template <typename T>
  void apply(
      typename std::enable_if<std::is_integral<T>::value>::type* = 0) const {
329
    VLOG(10) << var_name << " need not to check, it's type is not float point";
W
WangXi 已提交
330 331 332
  }

  template <typename T>
333 334 335 336 337 338
  void apply(
      typename std::enable_if<
          std::is_floating_point<T>::value ||
          std::is_same<T, ::paddle::platform::complex<float>>::value ||
          std::is_same<T, ::paddle::platform::complex<double>>::value>::type* =
          0) const;
W
WangXi 已提交
339

340 341 342 343
  std::string op_type;
  std::string var_name;
  const phi::DenseTensor& tensor;
  const platform::Place& place;
W
WangXi 已提交
344 345 346
};

template <typename DeviceContext>
347 348
void tensor_check(const std::string& op_type,
                  const std::string& var_name,
349
                  const phi::DenseTensor& tensor,
W
WangXi 已提交
350 351 352 353 354
                  const platform::Place& place);

}  // namespace details
}  // namespace framework
}  // namespace paddle