test_imperative_se_resnext.py 18.9 KB
Newer Older
Y
Yan Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

Y
Yan Xu 已提交
17
import numpy as np
18
from test_imperative_base import new_program_scope
Y
Yan Xu 已提交
19 20 21 22

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
H
hong 已提交
23
from paddle.fluid.framework import _test_eager_guard
24
from paddle.fluid.layer_helper import LayerHelper
25
from paddle.nn import BatchNorm
26

Y
Yan Xu 已提交
27 28 29 30 31 32 33 34 35
batch_size = 8
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": batch_size,
        "epochs": [30, 60, 90],
36
        "steps": [0.1, 0.01, 0.001, 0.0001],
Y
Yan Xu 已提交
37 38 39 40 41 42 43
    },
    "batch_size": batch_size,
    "lr": 0.1,
    "total_images": 6149,
}


44
def optimizer_setting(params, parameter_list=None):
Y
Yan Xu 已提交
45 46 47 48 49 50 51
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 6149
        else:
            total_images = params["total_images"]
        # TODO(Yancey1989): using lr decay if it is ready.
52 53
        # batch_size = ls["batch_size"]
        # step = int(total_images / batch_size + 1)
Y
Yan Xu 已提交
54

55 56 57
        # bd = [step * e for e in ls["epochs"]]
        # base_lr = params["lr"]
        # lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
J
Jiabin Yang 已提交
58
        if fluid._non_static_mode():
59 60 61
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.01, parameter_list=parameter_list
            )
62 63
        else:
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
Y
Yan Xu 已提交
64 65 66 67 68

    return optimizer


class ConvBNLayer(fluid.dygraph.Layer):
69 70 71 72 73 74 75 76 77
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        groups=1,
        act=None,
    ):
78
        super().__init__()
Y
Yan Xu 已提交
79

80 81 82 83
        self._conv = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
84 85 86 87 88
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            bias_attr=None,
        )
Y
Yan Xu 已提交
89

90
        self._batch_norm = BatchNorm(num_filters, act=act)
Y
Yan Xu 已提交
91 92 93 94 95 96 97 98 99

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
100
    def __init__(self, num_channels, reduction_ratio):
Y
Yan Xu 已提交
101

102
        super().__init__()
103
        self._num_channels = num_channels
W
wangzhen38 已提交
104
        self._pool = paddle.nn.AdaptiveAvgPool2D(1)
105
        self._squeeze = paddle.nn.Linear(
106 107
            num_channels,
            num_channels // reduction_ratio,
108 109
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(value=0.05)
110 111
            ),
        )
112 113
        self.act_1 = paddle.nn.ReLU()
        self._excitation = paddle.nn.Linear(
114 115
            num_channels // reduction_ratio,
            num_channels,
116 117
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(value=0.05)
118 119
            ),
        )
120 121
        self.act_2 = paddle.nn.Softmax()

Y
Yan Xu 已提交
122 123
    def forward(self, input):
        y = self._pool(input)
124
        y = paddle.reshape(y, shape=[-1, self._num_channels])
Y
Yan Xu 已提交
125
        y = self._squeeze(y)
126
        y = self.act_1(y)
Y
Yan Xu 已提交
127
        y = self._excitation(y)
128
        y = self.act_2(y)
129
        y = paddle.tensor.math._multiply_with_axis(x=input, y=y, axis=0)
Y
Yan Xu 已提交
130 131 132 133
        return y


class BottleneckBlock(fluid.dygraph.Layer):
134 135 136 137 138 139 140 141 142
    def __init__(
        self,
        num_channels,
        num_filters,
        stride,
        cardinality,
        reduction_ratio,
        shortcut=True,
    ):
143
        super().__init__()
Y
Yan Xu 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        self.conv0 = ConvBNLayer(
            num_channels=num_channels, num_filters=num_filters, filter_size=1
        )
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
        )
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act='relu',
        )

        self.scale = SqueezeExcitation(
            num_channels=num_filters * 4, reduction_ratio=reduction_ratio
        )
Y
Yan Xu 已提交
165 166

        if not shortcut:
167 168 169 170 171 172
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride,
            )
Y
Yan Xu 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

189
        y = paddle.add(x=short, y=scale)
Y
Yan Xu 已提交
190 191 192 193 194 195 196

        layer_helper = LayerHelper(self.full_name(), act='relu')
        y = layer_helper.append_activation(y)
        return y


class SeResNeXt(fluid.dygraph.Layer):
197
    def __init__(self, layers=50, class_dim=102):
198
        super().__init__()
Y
Yan Xu 已提交
199 200 201

        self.layers = layers
        supported_layers = [50, 101, 152]
202 203 204 205 206
        assert (
            layers in supported_layers
        ), "supported layers are {} but input layer is {}".format(
            supported_layers, layers
        )
Y
Yan Xu 已提交
207 208 209 210 211 212

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
213 214 215 216 217 218 219
            self.conv0 = ConvBNLayer(
                num_channels=3,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu',
            )
220
            self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
Y
Yan Xu 已提交
221 222 223 224 225
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
226 227 228 229 230 231 232
            self.conv0 = ConvBNLayer(
                num_channels=3,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu',
            )
233
            self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
Y
Yan Xu 已提交
234 235 236 237 238
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            self.conv0 = ConvBNLayer(
                num_channels=3,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu',
            )
            self.conv1 = ConvBNLayer(
                num_channels=64,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu',
            )
            self.conv2 = ConvBNLayer(
                num_channels=64,
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu',
            )
260
            self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
Y
Yan Xu 已提交
261 262 263

        self.bottleneck_block_list = []
        num_channels = 64
264 265
        if layers == 152:
            num_channels = 128
Y
Yan Xu 已提交
266 267 268 269 270
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
271 272 273 274 275 276 277 278 279
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut,
                    ),
                )
Y
Yan Xu 已提交
280 281 282
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True
W
wangzhen38 已提交
283
        self.pool2d_avg = paddle.nn.AdaptiveAvgPool2D(1)
Y
Yan Xu 已提交
284
        import math
285

Y
Yan Xu 已提交
286 287
        stdv = 1.0 / math.sqrt(2048 * 1.0)

288 289
        self.pool2d_avg_output = num_filters[-1] * 4 * 1 * 1

290
        self.out = paddle.nn.Linear(
291 292
            self.pool2d_avg_output,
            class_dim,
293 294
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Uniform(-stdv, stdv)
295 296
            ),
        )
297
        self.out_act = paddle.nn.Softmax()
Y
Yan Xu 已提交
298 299 300 301 302 303 304

    def forward(self, inputs):
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
305 306
            y = self.conv1(y)
            y = self.conv2(y)
Y
Yan Xu 已提交
307 308 309 310 311
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
312
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_output])
Y
Yan Xu 已提交
313
        y = self.out(y)
314
        return self.out_act(y)
Y
Yan Xu 已提交
315 316 317


class TestImperativeResneXt(unittest.TestCase):
318 319 320 321 322 323 324 325 326
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                doc = np.array(item[0]).reshape(3, 224, 224)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield doc, label

        return _reader_imple

Y
Yan Xu 已提交
327 328 329 330
    def test_se_resnext_float32(self):
        seed = 90

        batch_size = train_parameters["batch_size"]
331
        batch_num = 1
Y
Yan Xu 已提交
332
        epoch_num = 1
H
hong 已提交
333 334

        def run_dygraph():
C
cnn 已提交
335
            paddle.seed(seed)
L
Leo Chen 已提交
336
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
337

338 339
            se_resnext = SeResNeXt()
            optimizer = optimizer_setting(
340 341
                train_parameters, parameter_list=se_resnext.parameters()
            )
Y
Yan Xu 已提交
342
            np.random.seed(seed)
343 344 345

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
346 347 348 349 350 351 352 353 354
                paddle.batch(
                    self.reader_decorator(
                        paddle.dataset.flowers.train(use_xmap=False)
                    ),
                    batch_size=batch_size,
                    drop_last=True,
                ),
                places=fluid.CPUPlace(),
            )
Y
Yan Xu 已提交
355 356 357

            dy_param_init_value = {}
            for param in se_resnext.parameters():
L
lujun 已提交
358
                dy_param_init_value[param.name] = param.numpy()
Y
Yan Xu 已提交
359
            for epoch_id in range(epoch_num):
360
                for batch_id, data in enumerate(batch_py_reader()):
Y
Yan Xu 已提交
361 362 363 364

                    if batch_id >= batch_num and batch_num != -1:
                        break

365 366 367
                    img = data[0]
                    label = data[1]
                    label.stop_gradient = True
L
lujun 已提交
368
                    label.stop_gradient = True
Y
Yan Xu 已提交
369 370

                    out = se_resnext(img)
371
                    softmax_out = paddle.nn.functional.softmax(out)
372 373 374 375 376
                    loss = paddle.nn.functional.cross_entropy(
                        input=softmax_out,
                        label=label,
                        reduction='none',
                        use_softmax=False,
377
                    )
378
                    avg_loss = paddle.mean(x=loss)
Y
Yan Xu 已提交
379

L
lujun 已提交
380
                    dy_out = avg_loss.numpy()
Y
Yan Xu 已提交
381 382 383 384

                    if batch_id == 0:
                        for param in se_resnext.parameters():
                            if param.name not in dy_param_init_value:
L
lujun 已提交
385 386
                                dy_param_init_value[param.name] = param.numpy()
                    avg_loss.backward()
Y
Yan Xu 已提交
387

388 389 390
                    dy_grad_value = {}
                    for param in se_resnext.parameters():
                        if param.trainable:
391
                            np_array = np.array(
392 393 394 395 396
                                param._grad_ivar().value().get_tensor()
                            )
                            dy_grad_value[
                                param.name + core.grad_var_suffix()
                            ] = np_array
Y
Yan Xu 已提交
397 398 399 400 401

                    optimizer.minimize(avg_loss)
                    se_resnext.clear_gradients()

                    dy_param_value = {}
Y
Yan Xu 已提交
402
                    for param in se_resnext.parameters():
L
lujun 已提交
403
                        dy_param_value[param.name] = param.numpy()
Y
Yan Xu 已提交
404

405 406 407 408 409 410
                    return (
                        dy_out,
                        dy_param_init_value,
                        dy_param_value,
                        dy_grad_value,
                    )
H
hong 已提交
411 412

        with fluid.dygraph.guard():
413 414 415 416 417 418
            (
                dy_out,
                dy_param_init_value,
                dy_param_value,
                dy_grad_value,
            ) = run_dygraph()
H
hong 已提交
419 420 421

        with fluid.dygraph.guard():
            with _test_eager_guard():
422 423 424 425 426 427
                (
                    eager_out,
                    eager_param_init_value,
                    eager_param_value,
                    eager_grad_value,
                ) = run_dygraph()
H
hong 已提交
428

Y
Yan Xu 已提交
429
        with new_program_scope():
C
cnn 已提交
430
            paddle.seed(seed)
L
Leo Chen 已提交
431
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
432

433 434 435 436 437
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
Y
Yan Xu 已提交
438

439
            se_resnext = SeResNeXt()
Y
Yan Xu 已提交
440 441 442 443 444
            optimizer = optimizer_setting(train_parameters)

            np.random.seed(seed)
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
Y
Yan Xu 已提交
445
                batch_size=batch_size,
446 447
                drop_last=True,
            )
Y
Yan Xu 已提交
448

449 450 451
            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32'
            )
Y
Yan Xu 已提交
452 453
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = se_resnext(img)
454
            softmax_out = paddle.nn.function.softmax(out)
455 456 457 458 459 460
            loss = paddle.nn.functional.cross_entropy(
                input=softmax_out,
                label=label,
                reduction='none',
                use_softmax=False,
            )
461
            avg_loss = paddle.mean(x=loss)
Y
Yan Xu 已提交
462 463 464 465 466 467 468 469 470 471
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            static_grad_name_list = []
            for param in se_resnext.parameters():
                static_param_name_list.append(param.name)
            for param in se_resnext.parameters():
                if param.trainable:
472 473 474
                    static_grad_name_list.append(
                        param.name + core.grad_var_suffix()
                    )
Y
Yan Xu 已提交
475

476 477 478 479
            out = exe.run(
                fluid.default_startup_program(),
                fetch_list=static_param_name_list,
            )
Y
Yan Xu 已提交
480 481 482

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]
Y
Yan Xu 已提交
483 484 485 486 487
            for epoch_id in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    if batch_id >= batch_num and batch_num != -1:
                        break

488 489 490 491 492 493 494 495
                    static_x_data = np.array(
                        [x[0].reshape(3, 224, 224) for x in data]
                    ).astype('float32')
                    y_data = (
                        np.array([x[1] for x in data])
                        .astype('int64')
                        .reshape([batch_size, 1])
                    )
Y
Yan Xu 已提交
496 497 498 499

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    fetch_list.extend(static_grad_name_list)
500 501 502 503 504
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data, "label": y_data},
                        fetch_list=fetch_list,
                    )
Y
Yan Xu 已提交
505 506 507 508 509

                    static_param_value = {}
                    static_grad_value = {}
                    static_out = out[0]
                    param_start_pos = 1
510 511 512 513 514 515 516 517 518 519
                    grad_start_pos = (
                        len(static_param_name_list) + param_start_pos
                    )
                    for i in range(
                        param_start_pos,
                        len(static_param_name_list) + param_start_pos,
                    ):
                        static_param_value[
                            static_param_name_list[i - param_start_pos]
                        ] = out[i]
Y
Yan Xu 已提交
520
                    for i in range(
521 522 523 524 525 526
                        grad_start_pos,
                        len(static_grad_name_list) + grad_start_pos,
                    ):
                        static_grad_value[
                            static_grad_name_list[i - grad_start_pos]
                        ] = out[i]
527

528
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
Y
Yan Xu 已提交
529 530 531

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))

532
        for key, value in static_param_init_value.items():
533 534 535
            np.testing.assert_allclose(
                value, dy_param_init_value[key], rtol=1e-05
            )
Y
Yan Xu 已提交
536 537
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
538 539 540

        self.assertEqual(len(dy_grad_value), len(static_grad_value))

541
        for key, value in static_grad_value.items():
542
            np.testing.assert_allclose(value, dy_grad_value[key], rtol=1e-05)
543 544
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
Y
Yan Xu 已提交
545 546

        self.assertEqual(len(dy_param_value), len(static_param_value))
547
        for key, value in static_param_value.items():
548
            np.testing.assert_allclose(value, dy_param_value[key], rtol=1e-05)
Y
Yan Xu 已提交
549 550 551
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))

H
hong 已提交
552
        # check eager
553
        np.testing.assert_allclose(static_out, eager_out, rtol=1e-05)
H
hong 已提交
554

555 556 557
        self.assertEqual(
            len(eager_param_init_value), len(static_param_init_value)
        )
H
hong 已提交
558

559
        for key, value in static_param_init_value.items():
560 561 562
            np.testing.assert_allclose(
                value, eager_param_init_value[key], rtol=1e-05
            )
H
hong 已提交
563 564 565

        self.assertEqual(len(eager_grad_value), len(static_grad_value))

566
        for key, value in static_grad_value.items():
567
            np.testing.assert_allclose(value, eager_grad_value[key], rtol=1e-05)
H
hong 已提交
568 569

        self.assertEqual(len(eager_param_value), len(static_param_value))
570
        for key, value in static_param_value.items():
571 572 573
            np.testing.assert_allclose(
                value, eager_param_value[key], rtol=1e-05
            )
H
hong 已提交
574

Y
Yan Xu 已提交
575 576

if __name__ == '__main__':
577
    paddle.enable_static()
Y
Yan Xu 已提交
578
    unittest.main()