test_imperative_se_resnext.py 16.8 KB
Newer Older
Y
Yan Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper
24
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
Y
Yan Xu 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope

batch_size = 8
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": batch_size,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    },
    "batch_size": batch_size,
    "lr": 0.1,
    "total_images": 6149,
}


45
def optimizer_setting(params, parameter_list=None):
Y
Yan Xu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 6149
        else:
            total_images = params["total_images"]
        # TODO(Yancey1989): using lr decay if it is ready.
        #batch_size = ls["batch_size"]
        #step = int(total_images / batch_size + 1)

        #bd = [step * e for e in ls["epochs"]]
        #base_lr = params["lr"]
        #lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
59 60 61 62 63
        if fluid.in_dygraph_mode():
            optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                            parameter_list=parameter_list)
        else:
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
Y
Yan Xu 已提交
64 65 66 67 68 69

    return optimizer


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
70
                 num_channels,
Y
Yan Xu 已提交
71 72 73 74 75
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
76
        super(ConvBNLayer, self).__init__()
Y
Yan Xu 已提交
77 78

        self._conv = Conv2D(
79
            num_channels=num_channels,
Y
Yan Xu 已提交
80 81 82 83 84 85 86 87
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None)

88
        self._batch_norm = BatchNorm(num_filters, act=act)
Y
Yan Xu 已提交
89 90 91 92 93 94 95 96 97

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
98
    def __init__(self, num_channels, reduction_ratio):
Y
Yan Xu 已提交
99

100 101
        super(SqueezeExcitation, self).__init__()
        self._num_channels = num_channels
102
        self._pool = Pool2D(pool_size=0, pool_type='avg', global_pooling=True)
103 104 105
        self._squeeze = Linear(
            num_channels,
            num_channels // reduction_ratio,
Y
Yan Xu 已提交
106 107 108
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
            act='relu')
109 110 111
        self._excitation = Linear(
            num_channels // reduction_ratio,
            num_channels,
Y
Yan Xu 已提交
112 113
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
Y
Yan Xu 已提交
114
            act='sigmoid')
Y
Yan Xu 已提交
115 116 117

    def forward(self, input):
        y = self._pool(input)
118
        y = fluid.layers.reshape(y, shape=[-1, self._num_channels])
Y
Yan Xu 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132
        y = self._squeeze(y)
        y = self._excitation(y)
        y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 reduction_ratio,
                 shortcut=True):
133
        super(BottleneckBlock, self).__init__()
Y
Yan Xu 已提交
134 135

        self.conv0 = ConvBNLayer(
136
            num_channels=num_channels, num_filters=num_filters, filter_size=1)
Y
Yan Xu 已提交
137
        self.conv1 = ConvBNLayer(
138
            num_channels=num_filters,
Y
Yan Xu 已提交
139 140 141 142 143
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality)
        self.conv2 = ConvBNLayer(
144
            num_channels=num_filters,
Y
Yan Xu 已提交
145 146 147 148 149
            num_filters=num_filters * 4,
            filter_size=1,
            act='relu')

        self.scale = SqueezeExcitation(
150
            num_channels=num_filters * 4, reduction_ratio=reduction_ratio)
Y
Yan Xu 已提交
151 152 153

        if not shortcut:
            self.short = ConvBNLayer(
154
                num_channels=num_channels,
Y
Yan Xu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=scale)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        y = layer_helper.append_activation(y)
        return y


class SeResNeXt(fluid.dygraph.Layer):
182 183
    def __init__(self, layers=50, class_dim=102):
        super(SeResNeXt, self).__init__()
Y
Yan Xu 已提交
184 185 186 187 188 189 190 191 192 193 194 195

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
196
                num_channels=3,
Y
Yan Xu 已提交
197 198 199 200 201
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
202
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
203 204 205 206 207 208
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
209
                num_channels=3,
210
                num_filters=64,
Y
Yan Xu 已提交
211 212 213 214
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
215
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
216 217 218 219 220 221
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
222
                num_channels=3,
223 224
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
225 226 227
                stride=2,
                act='relu')
            self.conv1 = ConvBNLayer(
228 229 230
                num_channels=64,
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
231 232 233
                stride=2,
                act='relu')
            self.conv2 = ConvBNLayer(
234 235 236 237
                num_channels=64,
                num_filters=128,
                filter_size=3,
                stride=1,
Y
Yan Xu 已提交
238 239
                act='relu')
            self.pool = Pool2D(
240
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
241 242 243

        self.bottleneck_block_list = []
        num_channels = 64
244 245
        if layers == 152:
            num_channels = 128
Y
Yan Xu 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
263
            pool_size=7, pool_type='avg', global_pooling=True)
Y
Yan Xu 已提交
264 265 266
        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

267 268 269 270 271 272 273 274
        self.pool2d_avg_output = num_filters[-1] * 4 * 1 * 1

        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
            act='softmax',
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv)))
Y
Yan Xu 已提交
275 276 277 278 279 280 281

    def forward(self, inputs):
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
282 283
            y = self.conv1(y)
            y = self.conv2(y)
Y
Yan Xu 已提交
284 285 286 287 288 289
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.dropout(y, dropout_prob=0.2)
290
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
Y
Yan Xu 已提交
291 292 293 294 295
        y = self.out(y)
        return y


class TestImperativeResneXt(unittest.TestCase):
296 297 298 299 300 301 302 303 304
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                doc = np.array(item[0]).reshape(3, 224, 224)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield doc, label

        return _reader_imple

Y
Yan Xu 已提交
305 306 307 308
    def test_se_resnext_float32(self):
        seed = 90

        batch_size = train_parameters["batch_size"]
309
        batch_num = 1
Y
Yan Xu 已提交
310
        epoch_num = 1
Y
Yan Xu 已提交
311 312 313 314
        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

315 316 317
            se_resnext = SeResNeXt()
            optimizer = optimizer_setting(
                train_parameters, parameter_list=se_resnext.parameters())
Y
Yan Xu 已提交
318
            np.random.seed(seed)
319 320 321 322 323 324 325 326 327

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(
                        paddle.dataset.flowers.train(use_xmap=False)),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
Y
Yan Xu 已提交
328 329 330

            dy_param_init_value = {}
            for param in se_resnext.parameters():
L
lujun 已提交
331
                dy_param_init_value[param.name] = param.numpy()
Y
Yan Xu 已提交
332
            for epoch_id in range(epoch_num):
333
                for batch_id, data in enumerate(batch_py_reader()):
Y
Yan Xu 已提交
334 335 336 337

                    if batch_id >= batch_num and batch_num != -1:
                        break

338 339 340
                    img = data[0]
                    label = data[1]
                    label.stop_gradient = True
L
lujun 已提交
341
                    label.stop_gradient = True
Y
Yan Xu 已提交
342 343 344 345 346

                    out = se_resnext(img)
                    loss = fluid.layers.cross_entropy(input=out, label=label)
                    avg_loss = fluid.layers.mean(x=loss)

L
lujun 已提交
347
                    dy_out = avg_loss.numpy()
Y
Yan Xu 已提交
348 349 350 351

                    if batch_id == 0:
                        for param in se_resnext.parameters():
                            if param.name not in dy_param_init_value:
L
lujun 已提交
352 353
                                dy_param_init_value[param.name] = param.numpy()
                    avg_loss.backward()
Y
Yan Xu 已提交
354 355 356 357

                    #dy_grad_value = {}
                    #for param in se_resnext.parameters():
                    #    if param.trainable:
358
                    #        np_array = np.array(param._grad_ivar().value()
Y
Yan Xu 已提交
359 360 361 362 363 364 365
                    #                            .get_tensor())
                    #        dy_grad_value[param.name + core.grad_var_suffix()] = np_array

                    optimizer.minimize(avg_loss)
                    se_resnext.clear_gradients()

                    dy_param_value = {}
Y
Yan Xu 已提交
366
                    for param in se_resnext.parameters():
L
lujun 已提交
367
                        dy_param_value[param.name] = param.numpy()
Y
Yan Xu 已提交
368 369 370 371 372 373 374 375

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

376
            se_resnext = SeResNeXt()
Y
Yan Xu 已提交
377 378 379 380 381
            optimizer = optimizer_setting(train_parameters)

            np.random.seed(seed)
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
Y
Yan Xu 已提交
382 383
                batch_size=batch_size,
                drop_last=True)
Y
Yan Xu 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = se_resnext(img)
            loss = fluid.layers.cross_entropy(input=out, label=label)
            avg_loss = fluid.layers.mean(x=loss)
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            static_grad_name_list = []
            for param in se_resnext.parameters():
                static_param_name_list.append(param.name)
            for param in se_resnext.parameters():
                if param.trainable:
                    static_grad_name_list.append(param.name +
                                                 core.grad_var_suffix())

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]
Y
Yan Xu 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            for epoch_id in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    if batch_id >= batch_num and batch_num != -1:
                        break

                    static_x_data = np.array(
                        [x[0].reshape(3, 224, 224)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    fetch_list.extend(static_grad_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_grad_value = {}
                    static_out = out[0]
                    param_start_pos = 1
                    grad_start_pos = len(
                        static_param_name_list) + param_start_pos
                    for i in range(
                            param_start_pos,
                            len(static_param_name_list) + param_start_pos):
                        static_param_value[static_param_name_list[
                            i - param_start_pos]] = out[i]
                    for i in range(grad_start_pos,
                                   len(static_grad_name_list) + grad_start_pos):
                        static_grad_value[static_grad_name_list[
                            i - grad_start_pos]] = out[i]
Y
Yan Xu 已提交
445 446 447 448 449 450 451 452
        self.assertTrue(np.allclose(static_out, dy_out))

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
Y
Yan Xu 已提交
453 454 455 456 457 458
        # FIXME(Yancey1989): np.array(_ivar.value().get_tensor()) leads to memory lake
        #self.assertEqual(len(dy_grad_value), len(static_grad_value))
        #for key, value in six.iteritems(static_grad_value):
        #    self.assertTrue(np.allclose(value, dy_grad_value[key]))
        #    self.assertTrue(np.isfinite(value.all()))
        #    self.assertFalse(np.isnan(value.any()))
Y
Yan Xu 已提交
459 460 461 462 463 464 465 466 467 468

        self.assertEqual(len(dy_param_value), len(static_param_value))
        for key, value in six.iteritems(static_param_value):
            self.assertTrue(np.allclose(value, dy_param_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))


if __name__ == '__main__':
    unittest.main()