test_imperative_se_resnext.py 18.9 KB
Newer Older
Y
Yan Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper
22
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
Y
Yan Xu 已提交
23
from test_imperative_base import new_program_scope
H
hong 已提交
24
from paddle.fluid.framework import _test_eager_guard
Y
Yan Xu 已提交
25

26 27 28
if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})

Y
Yan Xu 已提交
29 30 31 32 33 34 35 36 37
batch_size = 8
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": batch_size,
        "epochs": [30, 60, 90],
38
        "steps": [0.1, 0.01, 0.001, 0.0001],
Y
Yan Xu 已提交
39 40 41 42 43 44 45
    },
    "batch_size": batch_size,
    "lr": 0.1,
    "total_images": 6149,
}


46
def optimizer_setting(params, parameter_list=None):
Y
Yan Xu 已提交
47 48 49 50 51 52 53
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 6149
        else:
            total_images = params["total_images"]
        # TODO(Yancey1989): using lr decay if it is ready.
54 55
        # batch_size = ls["batch_size"]
        # step = int(total_images / batch_size + 1)
Y
Yan Xu 已提交
56

57 58 59
        # bd = [step * e for e in ls["epochs"]]
        # base_lr = params["lr"]
        # lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
J
Jiabin Yang 已提交
60
        if fluid._non_static_mode():
61 62 63
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.01, parameter_list=parameter_list
            )
64 65
        else:
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
Y
Yan Xu 已提交
66 67 68 69 70

    return optimizer


class ConvBNLayer(fluid.dygraph.Layer):
71 72 73 74 75 76 77 78 79
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        groups=1,
        act=None,
    ):
80
        super().__init__()
Y
Yan Xu 已提交
81

82 83 84 85 86 87 88 89 90 91
        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None,
        )
Y
Yan Xu 已提交
92

93
        self._batch_norm = BatchNorm(num_filters, act=act)
Y
Yan Xu 已提交
94 95 96 97 98 99 100 101 102

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
103
    def __init__(self, num_channels, reduction_ratio):
Y
Yan Xu 已提交
104

105
        super().__init__()
106
        self._num_channels = num_channels
107
        self._pool = Pool2D(pool_size=0, pool_type='avg', global_pooling=True)
108 109 110
        self._squeeze = Linear(
            num_channels,
            num_channels // reduction_ratio,
111 112 113 114 115
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)
            ),
            act='relu',
        )
116 117 118
        self._excitation = Linear(
            num_channels // reduction_ratio,
            num_channels,
119 120 121 122 123
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)
            ),
            act='sigmoid',
        )
Y
Yan Xu 已提交
124 125 126

    def forward(self, input):
        y = self._pool(input)
127
        y = fluid.layers.reshape(y, shape=[-1, self._num_channels])
Y
Yan Xu 已提交
128 129 130 131 132 133 134
        y = self._squeeze(y)
        y = self._excitation(y)
        y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
135 136 137 138 139 140 141 142 143
    def __init__(
        self,
        num_channels,
        num_filters,
        stride,
        cardinality,
        reduction_ratio,
        shortcut=True,
    ):
144
        super().__init__()
Y
Yan Xu 已提交
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        self.conv0 = ConvBNLayer(
            num_channels=num_channels, num_filters=num_filters, filter_size=1
        )
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
        )
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act='relu',
        )

        self.scale = SqueezeExcitation(
            num_channels=num_filters * 4, reduction_ratio=reduction_ratio
        )
Y
Yan Xu 已提交
166 167

        if not shortcut:
168 169 170 171 172 173
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride,
            )
Y
Yan Xu 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=scale)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        y = layer_helper.append_activation(y)
        return y


class SeResNeXt(fluid.dygraph.Layer):
198
    def __init__(self, layers=50, class_dim=102):
199
        super().__init__()
Y
Yan Xu 已提交
200 201 202

        self.layers = layers
        supported_layers = [50, 101, 152]
203 204 205 206 207
        assert (
            layers in supported_layers
        ), "supported layers are {} but input layer is {}".format(
            supported_layers, layers
        )
Y
Yan Xu 已提交
208 209 210 211 212 213

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
214 215 216 217 218 219 220 221 222 223
            self.conv0 = ConvBNLayer(
                num_channels=3,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu',
            )
            self.pool = Pool2D(
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max'
            )
Y
Yan Xu 已提交
224 225 226 227 228
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
229 230 231 232 233 234 235 236 237 238
            self.conv0 = ConvBNLayer(
                num_channels=3,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu',
            )
            self.pool = Pool2D(
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max'
            )
Y
Yan Xu 已提交
239 240 241 242 243
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            self.conv0 = ConvBNLayer(
                num_channels=3,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu',
            )
            self.conv1 = ConvBNLayer(
                num_channels=64,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu',
            )
            self.conv2 = ConvBNLayer(
                num_channels=64,
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu',
            )
            self.pool = Pool2D(
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max'
            )
Y
Yan Xu 已提交
268 269 270

        self.bottleneck_block_list = []
        num_channels = 64
271 272
        if layers == 152:
            num_channels = 128
Y
Yan Xu 已提交
273 274 275 276 277
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
278 279 280 281 282 283 284 285 286
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut,
                    ),
                )
Y
Yan Xu 已提交
287 288 289 290
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

291 292 293
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True
        )
Y
Yan Xu 已提交
294
        import math
295

Y
Yan Xu 已提交
296 297
        stdv = 1.0 / math.sqrt(2048 * 1.0)

298 299 300 301 302 303 304
        self.pool2d_avg_output = num_filters[-1] * 4 * 1 * 1

        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
            act='softmax',
            param_attr=fluid.param_attr.ParamAttr(
305 306 307
                initializer=fluid.initializer.Uniform(-stdv, stdv)
            ),
        )
Y
Yan Xu 已提交
308 309 310 311 312 313 314

    def forward(self, inputs):
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
315 316
            y = self.conv1(y)
            y = self.conv2(y)
Y
Yan Xu 已提交
317 318 319 320 321
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
322
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
Y
Yan Xu 已提交
323 324 325 326 327
        y = self.out(y)
        return y


class TestImperativeResneXt(unittest.TestCase):
328 329 330 331 332 333 334 335 336
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                doc = np.array(item[0]).reshape(3, 224, 224)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield doc, label

        return _reader_imple

Y
Yan Xu 已提交
337 338 339 340
    def test_se_resnext_float32(self):
        seed = 90

        batch_size = train_parameters["batch_size"]
341
        batch_num = 1
Y
Yan Xu 已提交
342
        epoch_num = 1
H
hong 已提交
343 344

        def run_dygraph():
C
cnn 已提交
345
            paddle.seed(seed)
L
Leo Chen 已提交
346
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
347

348 349
            se_resnext = SeResNeXt()
            optimizer = optimizer_setting(
350 351
                train_parameters, parameter_list=se_resnext.parameters()
            )
Y
Yan Xu 已提交
352
            np.random.seed(seed)
353 354 355

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
356 357 358 359 360 361 362 363 364
                paddle.batch(
                    self.reader_decorator(
                        paddle.dataset.flowers.train(use_xmap=False)
                    ),
                    batch_size=batch_size,
                    drop_last=True,
                ),
                places=fluid.CPUPlace(),
            )
Y
Yan Xu 已提交
365 366 367

            dy_param_init_value = {}
            for param in se_resnext.parameters():
L
lujun 已提交
368
                dy_param_init_value[param.name] = param.numpy()
Y
Yan Xu 已提交
369
            for epoch_id in range(epoch_num):
370
                for batch_id, data in enumerate(batch_py_reader()):
Y
Yan Xu 已提交
371 372 373 374

                    if batch_id >= batch_num and batch_num != -1:
                        break

375 376 377
                    img = data[0]
                    label = data[1]
                    label.stop_gradient = True
L
lujun 已提交
378
                    label.stop_gradient = True
Y
Yan Xu 已提交
379 380

                    out = se_resnext(img)
381
                    softmax_out = fluid.layers.softmax(out, use_cudnn=False)
382 383 384
                    loss = fluid.layers.cross_entropy(
                        input=softmax_out, label=label
                    )
385
                    avg_loss = paddle.mean(x=loss)
Y
Yan Xu 已提交
386

L
lujun 已提交
387
                    dy_out = avg_loss.numpy()
Y
Yan Xu 已提交
388 389 390 391

                    if batch_id == 0:
                        for param in se_resnext.parameters():
                            if param.name not in dy_param_init_value:
L
lujun 已提交
392 393
                                dy_param_init_value[param.name] = param.numpy()
                    avg_loss.backward()
Y
Yan Xu 已提交
394

395 396 397
                    dy_grad_value = {}
                    for param in se_resnext.parameters():
                        if param.trainable:
398
                            np_array = np.array(
399 400 401 402 403
                                param._grad_ivar().value().get_tensor()
                            )
                            dy_grad_value[
                                param.name + core.grad_var_suffix()
                            ] = np_array
Y
Yan Xu 已提交
404 405 406 407 408

                    optimizer.minimize(avg_loss)
                    se_resnext.clear_gradients()

                    dy_param_value = {}
Y
Yan Xu 已提交
409
                    for param in se_resnext.parameters():
L
lujun 已提交
410
                        dy_param_value[param.name] = param.numpy()
Y
Yan Xu 已提交
411

412 413 414 415 416 417
                    return (
                        dy_out,
                        dy_param_init_value,
                        dy_param_value,
                        dy_grad_value,
                    )
H
hong 已提交
418 419

        with fluid.dygraph.guard():
420 421 422 423 424 425
            (
                dy_out,
                dy_param_init_value,
                dy_param_value,
                dy_grad_value,
            ) = run_dygraph()
H
hong 已提交
426 427 428

        with fluid.dygraph.guard():
            with _test_eager_guard():
429 430 431 432 433 434
                (
                    eager_out,
                    eager_param_init_value,
                    eager_param_value,
                    eager_grad_value,
                ) = run_dygraph()
H
hong 已提交
435

Y
Yan Xu 已提交
436
        with new_program_scope():
C
cnn 已提交
437
            paddle.seed(seed)
L
Leo Chen 已提交
438
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
439

440 441 442 443 444
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
Y
Yan Xu 已提交
445

446
            se_resnext = SeResNeXt()
Y
Yan Xu 已提交
447 448 449 450 451
            optimizer = optimizer_setting(train_parameters)

            np.random.seed(seed)
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
Y
Yan Xu 已提交
452
                batch_size=batch_size,
453 454
                drop_last=True,
            )
Y
Yan Xu 已提交
455

456 457 458
            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32'
            )
Y
Yan Xu 已提交
459 460
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = se_resnext(img)
461 462
            softmax_out = fluid.layers.softmax(out, use_cudnn=False)
            loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
463
            avg_loss = paddle.mean(x=loss)
Y
Yan Xu 已提交
464 465 466 467 468 469 470 471 472 473
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            static_grad_name_list = []
            for param in se_resnext.parameters():
                static_param_name_list.append(param.name)
            for param in se_resnext.parameters():
                if param.trainable:
474 475 476
                    static_grad_name_list.append(
                        param.name + core.grad_var_suffix()
                    )
Y
Yan Xu 已提交
477

478 479 480 481
            out = exe.run(
                fluid.default_startup_program(),
                fetch_list=static_param_name_list,
            )
Y
Yan Xu 已提交
482 483 484

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]
Y
Yan Xu 已提交
485 486 487 488 489
            for epoch_id in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    if batch_id >= batch_num and batch_num != -1:
                        break

490 491 492 493 494 495 496 497
                    static_x_data = np.array(
                        [x[0].reshape(3, 224, 224) for x in data]
                    ).astype('float32')
                    y_data = (
                        np.array([x[1] for x in data])
                        .astype('int64')
                        .reshape([batch_size, 1])
                    )
Y
Yan Xu 已提交
498 499 500 501

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    fetch_list.extend(static_grad_name_list)
502 503 504 505 506
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data, "label": y_data},
                        fetch_list=fetch_list,
                    )
Y
Yan Xu 已提交
507 508 509 510 511

                    static_param_value = {}
                    static_grad_value = {}
                    static_out = out[0]
                    param_start_pos = 1
512 513 514 515 516 517 518 519 520 521
                    grad_start_pos = (
                        len(static_param_name_list) + param_start_pos
                    )
                    for i in range(
                        param_start_pos,
                        len(static_param_name_list) + param_start_pos,
                    ):
                        static_param_value[
                            static_param_name_list[i - param_start_pos]
                        ] = out[i]
Y
Yan Xu 已提交
522
                    for i in range(
523 524 525 526 527 528
                        grad_start_pos,
                        len(static_grad_name_list) + grad_start_pos,
                    ):
                        static_grad_value[
                            static_grad_name_list[i - grad_start_pos]
                        ] = out[i]
529

530
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
Y
Yan Xu 已提交
531 532 533

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))

534
        for key, value in static_param_init_value.items():
535 536 537
            np.testing.assert_allclose(
                value, dy_param_init_value[key], rtol=1e-05
            )
Y
Yan Xu 已提交
538 539
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
540 541 542

        self.assertEqual(len(dy_grad_value), len(static_grad_value))

543
        for key, value in static_grad_value.items():
544
            np.testing.assert_allclose(value, dy_grad_value[key], rtol=1e-05)
545 546
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
Y
Yan Xu 已提交
547 548

        self.assertEqual(len(dy_param_value), len(static_param_value))
549
        for key, value in static_param_value.items():
550
            np.testing.assert_allclose(value, dy_param_value[key], rtol=1e-05)
Y
Yan Xu 已提交
551 552 553
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))

H
hong 已提交
554
        # check eager
555
        np.testing.assert_allclose(static_out, eager_out, rtol=1e-05)
H
hong 已提交
556

557 558 559
        self.assertEqual(
            len(eager_param_init_value), len(static_param_init_value)
        )
H
hong 已提交
560

561
        for key, value in static_param_init_value.items():
562 563 564
            np.testing.assert_allclose(
                value, eager_param_init_value[key], rtol=1e-05
            )
H
hong 已提交
565 566 567

        self.assertEqual(len(eager_grad_value), len(static_grad_value))

568
        for key, value in static_grad_value.items():
569
            np.testing.assert_allclose(value, eager_grad_value[key], rtol=1e-05)
H
hong 已提交
570 571

        self.assertEqual(len(eager_param_value), len(static_param_value))
572
        for key, value in static_param_value.items():
573 574 575
            np.testing.assert_allclose(
                value, eager_param_value[key], rtol=1e-05
            )
H
hong 已提交
576

Y
Yan Xu 已提交
577 578

if __name__ == '__main__':
579
    paddle.enable_static()
Y
Yan Xu 已提交
580
    unittest.main()