fusion.h 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"

namespace phi {

// Common InferMeta Functions for fusion operators.
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

W
wz1qqx 已提交
25 26 27 28 29 30 31 32
void AddActXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
                        const MetaTensor& y,
                        const MetaTensor& y_max,
                        int act_type,
                        MetaTensor* out,
                        MetaTensor* out_max);

W
wz1qqx 已提交
33 34 35 36
void AddLayernormXPUInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              const MetaTensor& scale,
                              const MetaTensor& bias,
W
wz1qqx 已提交
37
                              int begin_norm_axis,
W
wz1qqx 已提交
38
                              float epsilon,
39
                              MetaTensor* out);
W
wz1qqx 已提交
40

W
wz1qqx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
void Conv1dXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
                        const MetaTensor& filter,
                        const MetaTensor& filter_max,
                        const MetaTensor& bias,
                        const MetaTensor& branch,
                        const MetaTensor& branch_max,
                        const std::vector<int>& paddings,
                        const std::string& padding_algorithm,
                        int dilations,
                        int strides,
                        int groups,
                        int act_type,
                        float act_param,
                        MetaTensor* out,
                        MetaTensor* out_max);

58 59
void Conv2dXPUInferMeta(const MetaTensor& x,
                        const MetaTensor& x_max,
60 61 62 63
                        const MetaTensor& filter,
                        const MetaTensor& filter_max,
                        const MetaTensor& bias,
                        const MetaTensor& branch,
W
wz1qqx 已提交
64
                        const MetaTensor& branch_max,
65 66 67 68 69 70 71
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        const std::string& padding_algorithm,
                        int groups,
                        int act_type,
                        float act_param,
72
                        DataType out_dtype,
73 74
                        MetaTensor* out,
                        MetaTensor* out_max);
75

76 77 78
void EmbeddingWithEltwiseAddXPUInferMeta(
    const std::vector<const MetaTensor*>& ids,
    const std::vector<const MetaTensor*>& tables,
79 80 81 82
    const MetaTensor& mask,
    MetaTensor* out,
    MetaTensor* seq_lod,
    MetaTensor* max_seq_len);
83

84
void FcXPUInferMeta(const MetaTensor& x,
85
                    const MetaTensor& x_max,
86 87 88 89 90 91 92 93 94
                    const MetaTensor& w,
                    const MetaTensor& w_max,
                    const MetaTensor& bias,
                    int in_num_col_dims,
                    bool transpose_x,
                    float alpha,
                    float beta,
                    int act_type,
                    float act_alpha,
95
                    DataType out_dtype,
96 97
                    MetaTensor* out,
                    MetaTensor* out_max);
98

99 100 101 102
void GenerateSequenceXPUInferMeta(const MetaTensor& x,
                                  DataType dtype,
                                  MetaTensor* out);

103 104 105 106 107 108 109 110
void MultiEncoderXPUInferMeta(
    const MetaTensor& x,
    const std::vector<const MetaTensor*>& fc_weight,
    const std::vector<const MetaTensor*>& fc_weight_max,
    const std::vector<const MetaTensor*>& fc_bias,
    const std::vector<const MetaTensor*>& ln_scale,
    const std::vector<const MetaTensor*>& ln_bias,
    const MetaTensor& mask,
111 112
    const MetaTensor& seq_lod,
    const MetaTensor& max_seq_len,
113 114 115 116 117 118 119 120 121 122 123 124 125
    int layer_num,
    bool norm_before,
    int hidden_dim,
    int head_num,
    int size_per_head,
    int ffn_hidden_dim_scale,
    int act_type,
    int relative_type,
    int slice_idx,
    MetaTensor* out,
    MetaTensor* x_fp16,
    MetaTensor* out_fp16);

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
void FusedMultiTransformerXpuInferMeta(
    const MetaTensor& x,
    const std::vector<const MetaTensor*>& ln_scale,
    const std::vector<const MetaTensor*>& ln_bias,
    const std::vector<const MetaTensor*>& qkvw,
    const std::vector<const MetaTensor*>& qkvw_max,
    const std::vector<const MetaTensor*>& qkv_bias,
    const std::vector<const MetaTensor*>& out_linear_w,
    const std::vector<const MetaTensor*>& out_linear_wmax,
    const std::vector<const MetaTensor*>& out_linear_bias,
    const std::vector<const MetaTensor*>& ffn_ln_scale,
    const std::vector<const MetaTensor*>& ffn_ln_bias,
    const std::vector<const MetaTensor*>& ffn1_weight,
    const std::vector<const MetaTensor*>& ffn1_weight_max,
    const std::vector<const MetaTensor*>& ffn1_bias,
    const std::vector<const MetaTensor*>& ffn2_weight,
    const std::vector<const MetaTensor*>& ffn2_weight_max,
    const std::vector<const MetaTensor*>& ffn2_bias,
    const std::vector<const MetaTensor*>& cache_kv,
    const std::vector<const MetaTensor*>& pre_caches,
Z
zhangbo9674 已提交
146 147 148 149 150
    const MetaTensor& rotary_pos_emb,
    const MetaTensor& time_step,
    const MetaTensor& seq_lengths,
    const MetaTensor& src_mask,
    const MetaTensor& gather_index,
151 152 153 154 155 156 157 158 159
    bool pre_layer_norm,
    int rotary_emb_dims,
    float epsilon,
    float dropout_rate,
    bool is_test,
    const std::string& dropout_implementation,
    const std::string& act_method,
    bool trans_qkvw,
    int ring_id,
160
    int gather_axis,
161 162
    MetaTensor* out,
    std::vector<MetaTensor*> cache_kv_out);
163 164 165 166 167 168 169 170 171 172

void YoloBoxXPUInferMeta(const MetaTensor& x,
                         const MetaTensor& x_max,
                         const MetaTensor& grid,
                         const MetaTensor& stride,
                         const MetaTensor& anchor_grid,
                         float offset,
                         MetaTensor* out,
                         MetaTensor* out_max);

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
void Conv2dTransposeXPUInferMeta(const MetaTensor& x,
                                 const MetaTensor& x_max,
                                 const MetaTensor& filter,
                                 const MetaTensor& filter_max,
                                 const MetaTensor& bias,
                                 const std::vector<int>& strides,
                                 const std::vector<int>& paddings,
                                 const std::vector<int>& output_padding,
                                 const IntArray& output_size,
                                 const std::string& padding_algorithm,
                                 int groups,
                                 const std::vector<int>& dilations,
                                 const std::string& data_format,
                                 bool has_bias,
                                 bool with_act,
                                 const std::string& act_type,
                                 MetaTensor* out,
                                 MetaTensor* out_max);
191 192 193 194 195 196

void FastWhereXPUInferMeta(const MetaTensor& condition,
                           const MetaTensor& x,
                           const MetaTensor& y,
                           MetaTensor* out);

197 198 199 200 201 202 203
void FastLayernormXPUInferMeta(const MetaTensor& x,
                               const MetaTensor& scale,
                               const MetaTensor& bias,
                               int begin_norm_axis,
                               float epsilon,
                               MetaTensor* out);

204
}  // namespace phi