op_gen.py 46.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml
19
from op_build_gen import gen_build_func_str
20 21 22
from op_interface_gen import (
    gen_exclusive_interface_str,
    gen_op_infer_meta_str,
C
Chen Zhiyang 已提交
23
    gen_op_vjp_str,
24
)
25
from op_member_func_gen import gen_op_get_inputs_outputs_str
26
from op_verify_gen import gen_verify_func_str
27 28 29 30
from vjp_interface_gen_op_list import (
    vjp_interface_declare_gen_op_list,
    vjp_interface_implementation_gen_op_list,
)
31 32 33 34 35 36 37 38 39 40 41 42

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
43
// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
44

45 46
#include <vector>

47 48
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
49
#include "paddle/ir/core/op_base.h"
50 51 52 53 54 55
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/utils.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/op_yaml_info_util.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/op_yaml_info.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/infermeta.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/vjp.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/trait/inplace.h"
H
hong 已提交
56 57
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
58
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_manual_op.h"
H
hong 已提交
59

60
{input}
61 62

{declare_type_id}
63 64 65 66 67 68
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

69 70 71 72
DECLARE_OP_TYPE_ID = """
IR_DECLARE_EXPLICIT_TYPE_ID({op_name})
"""

73 74 75 76 77 78 79
OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
80
  static OpInfoTuple GetOpInfo();
81
  static void Build({build_args});
82
  {build_mutable_attr_is_input}
83
  {build_attr_num_over_1}
84
  void Verify();
85
{get_inputs_and_outputs}
H
hong 已提交
86
{exclusive_interface}
87 88 89 90 91 92 93 94 95 96 97 98
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

# =====================================
# String Template for cc file code gen
# =====================================
99
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_generator/op_gen.py"
100
#include "{h_file}"
101 102
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_type.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_attribute.h"
103 104
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
105
#include "paddle/ir/core/builtin_op.h"
106
#include "paddle/ir/core/ir_context.h"
107
#include "paddle/phi/core/enforce.h"
108 109 110 111 112 113 114
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
Z
zhangbo9674 已提交
115
#include "paddle/phi/infermeta/fusion.h"
116
#include "paddle/phi/api/lib/utils/allocator.h"
117
#include "paddle/fluid/primitive/rule/vjp/vjp.h"
118
{def_primitive}
119
#include "paddle/ir/core/op_base.h"
120

121
{input}
122 123

{define_type_id}
124 125 126 127 128 129
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

130
# get op info
131 132
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
133 134 135
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
136
  paddle::dialect::OpRunTimeInfo run_time_info = paddle::dialect::OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{"{kernel_key_dtype}"}}, {{{inplace}}}, {{{view}}});
137

138
  return std::make_tuple(inputs, attributes, outputs, run_time_info, "{origin_op_name}");
139 140
}}
"""
141 142 143
CONSTRUCT_INPUT_INFO_TEMPLATE = """paddle::dialect::OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
CONSTRUCT_OUTPUT_INFO_TEMPLATE = """paddle::dialect::OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = """paddle::dialect::OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
144

145

146 147 148 149
DEFINE_OP_TYPE_ID = """
IR_DEFINE_EXPLICIT_TYPE_ID({op_name})
"""

150 151 152 153 154 155 156 157
scalar_type_maps = {
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}

158 159
_NO_NEED_GEN_OPS = {'add_n'}

160

161 162 163 164 165 166 167 168 169 170 171 172
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


173 174 175 176 177 178 179 180
def to_phi_and_fluid_grad_op_name(op_item):
    # Templat: sum_grad (reduce_sum_grad), sum_double_grad
    rtn = []
    all_names = op_item.split(', ')
    for name in all_names:
        backward_phi_name, backward_fluid_name = to_phi_and_fluid_op_name(name)
        rtn.append([backward_phi_name, backward_fluid_name])
    return rtn
181 182


183
# =====================================
184 185 186 187 188 189 190 191 192 193
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
194 195 196 197
            forward_phi_name, forward_fluid_name = to_phi_and_fluid_op_name(
                compat['op']
            )
            if op_name == forward_phi_name:
198
                return compat
199 200 201 202 203
            elif 'backward' in compat.keys():
                bkw_names = to_phi_and_fluid_grad_op_name(compat['backward'])
                for name in bkw_names:
                    if op_name == name[0]:
                        return compat
204 205 206 207 208
        return None


# =====================================
# Parse Op Information From Yaml
209 210
# =====================================
class OpInfoParser:
211
    def __init__(self, op_yaml_item, op_compat_item):
212
        self.op_yaml_item = op_yaml_item
213
        self.op_compat_item = op_compat_item
214
        self.op_phi_name = self.parse_op_phi_name()
215
        # parse inputs
216 217 218
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
219
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
220 221 222
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
223

224
        # parse outputs
225 226
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
227
        self.output_size_list = self.parse_output_size_list()
228
        self.output_optional_list = self.parse_output_optional_list()
229
        self.output_intermediate_list = self.parse_output_intermediate_list()
230 231 232 233 234
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
235

236
        # parse attributes
237 238 239
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
240 241
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
242 243
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
244 245
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
246
                'const std::vector<Scalar>&',
247
            ],
Z
zhangbo9674 已提交
248 249 250
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
251 252 253 254 255
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
256
                'const std::vector<float>&',
257 258 259 260 261
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
W
WangZhen 已提交
262
                'const std::vector<bool>&',
263
            ],
Y
YuanRisheng 已提交
264
            'str': ['ir::StrAttribute', 'const std::string&'],
265 266
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
267
                'const std::vector<std::string>&',
268
            ],
Y
YuanRisheng 已提交
269
            'Place': ['paddle::dialect::PlaceAttribute', 'const Place&'],
270 271 272 273 274 275
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
276
                'ir::ArrayAttribute<ir::Int64Attribute>',
277
                'const std::vector<int64_t>&',
278 279
            ],
            'int[]': [
Z
zhangbo9674 已提交
280
                'ir::ArrayAttribute<ir::Int32Attribute>',
281
                'const std::vector<int>&',
282 283
            ],
        }
284 285
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
286 287 288
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
C
Chen Zhiyang 已提交
289 290 291
        self.attribute_gen_arg_type_list = (
            self.parse_attribute_gen_arg_type_list()
        )
292
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
293 294 295
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
296 297
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

298 299 300 301 302 303
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

304 305 306 307 308 309 310 311
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

312 313 314
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
315
        if 'infer_meta' in self.op_yaml_item:
316
            self.infer_meta_func = self.op_yaml_item['infer_meta']["func"]
H
hong 已提交
317
        else:
318
            self.infer_meta_func = None
H
hong 已提交
319

320 321 322
        # parse backward name
        self.backward_name = self.parse_backward_name()

323 324 325 326
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

327 328 329
        # parse has_custom_verify
        self.custom_verify = self.parse_custom_verify()

330 331 332 333 334 335 336 337 338
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

339 340 341 342 343
    def parse_custom_verify(self):
        if 'custom_verify' in self.op_yaml_item:
            return self.op_yaml_item['custom_verify']
        return False

344
    def parse_op_phi_name(self):
345 346 347
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

363 364 365 366 367
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

368 369 370 371 372 373 374 375 376 377 378 379 380
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
381 382
                        scalar_attr == "depth"
                        and self.op_phi_name[0] == "one_hot"
383
                    ):
384
                        mutable_attribute_name_list.append("num_classes")
385
                    else:
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                        mutable_attribute_name_list.append(scalar_attr)
                    data_type = self.op_compat_item['scalar'][scalar_attr][
                        'data_type'
                    ]
                    # patch for isclose and allclose
                    if (self.op_compat_item['op'] == "isclose") or (
                        self.op_compat_item['op'] == "allclose"
                    ):
                        data_type = "float"
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            data_type,
                        ]
                    )
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )
        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
498 499 500 501
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
502 503
        return optional_list

504 505 506 507 508 509 510 511 512
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

513 514 515 516 517 518 519 520 521 522
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
523
            'SelectedRows': 'paddle::dialect::SelectedRowsType',
524 525 526 527 528 529 530 531 532
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

533 534 535 536 537 538 539 540 541
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

542 543 544 545
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
546 547 548 549
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
550
            else:
551
                optional_list.append("false")
552 553
        return optional_list

554 555 556 557 558 559 560 561 562 563 564 565
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

566 567 568 569 570 571
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

572 573 574 575 576 577 578 579 580 581 582 583 584 585
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
Y
YuanRisheng 已提交
586
                    temp_type = "const " + attribute_info['data_type'] + "&"
587 588 589
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

C
Chen Zhiyang 已提交
590 591 592 593 594 595 596 597 598 599 600
    def parse_attribute_gen_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            temp_type = self.attr_types_map[attribute_info['typename']][1]
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

601 602 603 604
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
605
                attribute_info['typename'] in self.attr_types_map
606
            ), f"{self.op_phi_name} : Attr type error."
607
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
608 609
        return type_list

610 611 612 613 614 615 616 617 618
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

619 620 621 622 623 624 625 626
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
627
            else:
628 629
                default_value_list.append(None)
        return default_value_list
630

631 632 633 634 635 636 637 638 639 640 641 642
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

643 644 645 646 647 648
    def parse_backward_name(self):
        if 'backward' in self.op_yaml_item:
            return self.op_yaml_item['backward']
        else:
            return None

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
667 668 669 670 671 672 673 674 675 676 677 678


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


def OpGenerator(
    op_yaml_files,
679
    op_compat_yaml_file,
680 681 682 683 684 685 686 687 688 689 690 691
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
692 693
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

694 695 696 697 698
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
699
    op_info_items = {}
700
    for op in op_yaml_items:
701 702
        op_info_items[op['name']] = OpInfoParser(
            op, op_compat_parser.get_compat(op['name'])
703
        )
704 705 706 707
    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
708
    for key, op_info in op_info_items.items():
709
        # get op inputs info
710 711 712
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
713
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
714
        # get op outputs info
715 716
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
717
        op_output_size_list = op_info.output_size_list
718
        op_output_optional_list = op_info.output_optional_list
719
        op_output_intermediate_list = op_info.output_intermediate_list
720 721 722 723
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
724 725
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
726
        op_attribute_data_type_list = op_info.attribute_data_type_list
727 728
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

745
        # others
746 747
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
748 749
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
750
        op_interfaces = ["paddle::dialect::OpYamlInfoInterface"]
751 752
        op_traits = []

753
        if op_info.infer_meta_func:
754
            op_interfaces += ["paddle::dialect::InferMetaInterface"]
755

756 757
        if (
            op_info.backward_name
758
            and op_info.op_phi_name[0] in vjp_interface_declare_gen_op_list
759
        ):
760
            op_interfaces += ["paddle::dialect::VjpInterface"]
761
        exclusive_interface_str = gen_exclusive_interface_str(op_info)
H
hong 已提交
762

763 764
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
765 766
            if op_name in _NO_NEED_GEN_OPS:
                continue
767 768 769
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

770 771 772
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
773 774 775
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
776 777

            if op_name[-1] == "_":
778
                op_traits += ["paddle::dialect::InplaceTrait"]
779

780 781 782 783
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

784 785 786
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
787 788 789 790 791
            op_get_inputs_outputs_str = gen_op_get_inputs_outputs_str(
                op_input_name_list,
                op_mutable_attribute_name_list,
                op_output_name_list,
            )
792

793 794 795 796 797 798
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
799 800
            build_attr_num_over_1 = ""
            build_func_with_attr_is_map = ""
801 802
            build_func_with_muta_attr_is_input = ""

803
            if op_infer_meta_map is not None:
804 805 806
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
807
                ) = gen_build_func_str(
808
                    op_class_name,
809
                    op_input_name_list,
810 811
                    op_input_type_list,
                    op_attribute_name_list,
812
                    op_attribute_type_list,
813 814
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
815
                    op_mutable_attribute_name_list,
816
                    op_mutable_attribute_type_list,
817
                    op_non_mutable_attribute_name_list,
818
                    op_non_mutable_attribute_type_list,
819 820
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
821 822 823 824
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
825
                    muta_attr_is_input=False,
826
                )
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
                if len(op_attribute_name_list) > 1:
                    (
                        build_args_with_attr_is_map_for_declare,
                        build_func_with_attr_is_map,
                    ) = gen_build_func_str(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_type_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=False,
                        attr_args_is_map=True,
                    )
                    build_attr_num_over_1 = (
                        "static void Build({build_args});".format(
                            build_args=build_args_with_attr_is_map_for_declare
                        )
                    )

858
                if len(op_mutable_attribute_name_list) > 0:
859 860 861
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
862
                    ) = gen_build_func_str(
863 864 865 866
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
867
                        op_attribute_type_list,
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
886

887
            # gen op_declare_str/op_defined_str
888
            if len(op_non_mutable_attribute_name_list) == 0:
889 890 891 892 893 894 895
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
896 897
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
898
                    build_attr_num_over_1=build_attr_num_over_1,
899
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
900
                    exclusive_interface=exclusive_interface_str,
901 902 903 904 905 906 907 908 909
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
910
                        attribute_num=len(op_non_mutable_attribute_name_list)
911
                    ),
912
                    attribute_num=len(op_non_mutable_attribute_name_list),
913 914
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
915
                    build_attr_num_over_1=build_attr_num_over_1,
916
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
917
                    exclusive_interface=exclusive_interface_str,
918 919
                )
                attribute_names_str = (
920
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
921 922 923
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
924
                    attribute_num=len(op_non_mutable_attribute_name_list),
925 926
                    attribute_names=attribute_names_str,
                )
927

928 929 930
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
931
            # generate get op info funciton: inputs
932
            input_info_list = []
933 934 935 936 937 938 939 940
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
941
                    )
942 943 944 945 946 947 948 949 950
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
951
                    )
952 953 954 955 956
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
957 958 959 960 961 962 963 964 965 966 967 968
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
969
                    )
970 971 972
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
973
            if len(op_non_mutable_attribute_name_list) > 0:
974
                attribute_info_list = []
975
                for idx in range(len(op_non_mutable_attribute_name_list)):
976 977
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
978 979 980 981 982
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
983
                        )
984
                    )
985
                attribute_info_str = ", ".join(attribute_info_list)
986 987 988 989 990 991
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
992

993 994
            kernel_func_str = ""
            kernel_param_str = ""
995
            kernel_key_dtype = ""
996 997 998
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
999 1000 1001 1002
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

1016 1017 1018 1019 1020
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1021 1022 1023 1024
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1025
                kernel_key_dtype=kernel_key_dtype,
1026 1027
                inplace=inplace_str,
                view=view_str,
1028
                origin_op_name=op_info.op_yaml_item['name'],
1029
            )
1030

1031
            # generate op verify function str
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            op_verify_str = ''
            if not op_info.custom_verify:
                op_verify_str = gen_verify_func_str(
                    op_class_name,
                    op_input_type_list,
                    op_input_optional_list,
                    op_mutable_attribute_name_list,
                    op_mutable_attribute_type_list,
                    op_non_mutable_attribute_name_list,
                    op_non_mutable_attribute_type_list,
                    op_output_type_list,
                    op_output_optional_list,
                )
1045

1046
            op_infer_meta_str = gen_op_infer_meta_str(op_info, op_class_name)
H
hong 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055
            # =================================== #
            #         gen Vjp func str      #
            # =================================== #

            # generate op vjp function str
            op_vjp_str = ''

            # TODO(chenzhiyang) add vjp gen code
C
Chen Zhiyang 已提交
1056 1057
            if (
                op_info.backward_name
1058 1059
                and op_info.op_phi_name[0]
                in vjp_interface_implementation_gen_op_list
C
Chen Zhiyang 已提交
1060 1061 1062 1063 1064 1065 1066 1067
            ):
                op_vjp_str = gen_op_vjp_str(
                    op_class_name,
                    op_info.backward_name,
                    op_name,
                    op_info_items[op_info.op_phi_name[0]],
                    op_info_items[op_info.backward_name],
                )
1068

1069 1070 1071 1072
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1073
            ops_defined_list.append(build_func_with_muta_attr_not_input)
1074
            ops_defined_list.append(build_func_with_attr_is_map)
1075 1076
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1077
            ops_defined_list.append(op_verify_str)
1078
            ops_defined_list.append(op_infer_meta_str)
1079 1080 1081 1082 1083 1084 1085
            # NOTE(chenxi67)skip if dialect_name==cinn
            if dialect_name == "cinn":
                import logging

                logging.warning("cinn is currently not support Vjp function")
            else:
                ops_defined_list.append(op_vjp_str)
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
1097 1098 1099 1100 1101

    declare_type_id_str = ""
    for op in ops_name_with_namespace_list:
        declare_type_id_str += DECLARE_OP_TYPE_ID.format(op_name=op)

1102 1103 1104 1105 1106 1107 1108
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
1109 1110 1111
        op_declare=op_list_str,
        input=head_file_str,
        declare_type_id=declare_type_id_str,
1112 1113 1114 1115 1116 1117 1118 1119
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
1120 1121 1122 1123 1124

    define_type_id_str = ""
    for op in ops_name_with_namespace_list:
        define_type_id_str += DEFINE_OP_TYPE_ID.format(op_name=op)

1125 1126 1127 1128 1129 1130
    # NOTE(chenxi67) Skip include this header file if dialect_name == cinn
    # otherwise we may get compile error when compile with "ncclDataType_t"
    def_primitive_str = "#include \"paddle/fluid/primitive/type/lazy_tensor.h\""
    if dialect_name == "cinn":
        def_primitive_str = ""

1131
    source_file_str = CC_FILE_TEMPLATE.format(
1132
        h_file=op_def_h_file[:-4],
1133
        def_primitive=def_primitive_str,
1134 1135
        input=source_file_str,
        define_type_id=define_type_id_str,
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
1179
        op_compat_yaml_file,
1180 1181 1182 1183 1184
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )