inference_api.cc 48.6 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/inference_api.h"
16

17
#include <pybind11/functional.h>
18
#include <pybind11/numpy.h>
F
flame 已提交
19
#include <pybind11/stl.h>
20

F
flame 已提交
21
#include <cstring>
22
#include <functional>
F
flame 已提交
23
#include <iostream>
24
#include <iterator>
25
#include <map>
26
#include <memory>
F
flame 已提交
27
#include <string>
28
#include <type_traits>
29
#include <unordered_set>
30
#include <utility>
F
flame 已提交
31
#include <vector>
32

F
flame 已提交
33
#include "paddle/fluid/inference/api/analysis_predictor.h"
34
#include "paddle/fluid/inference/api/helper.h"
35
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
36
#include "paddle/fluid/inference/api/paddle_infer_contrib.h"
F
flame 已提交
37
#include "paddle/fluid/inference/api/paddle_inference_api.h"
38
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
39
#include "paddle/fluid/inference/api/paddle_tensor.h"
40
#include "paddle/fluid/inference/utils/io_utils.h"
41 42 43
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/include/tensor.h"
44
#include "paddle/phi/core/compat/convert_utils.h"
F
flame 已提交
45

46 47 48 49
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/phi/core/cuda_stream.h"
#endif

50 51 52 53
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

F
flame 已提交
54 55
namespace py = pybind11;

56 57 58 59 60 61 62 63 64 65 66 67 68
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
constexpr int NPY_UINT16_ = 4;

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
69
struct npy_format_descriptor<phi::dtype::float16> {
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
  static constexpr auto name = _("float16");
};

}  // namespace detail
}  // namespace pybind11

F
flame 已提交
86 87
namespace paddle {
namespace pybind {
88 89 90
using paddle::AnalysisPredictor;
using paddle::NativeConfig;
using paddle::NativePaddlePredictor;
F
flame 已提交
91
using paddle::PaddleBuf;
92
using paddle::PaddleDataLayout;
93
using paddle::PaddleDType;
94
using paddle::PaddlePassBuilder;
F
flame 已提交
95 96
using paddle::PaddlePlace;
using paddle::PaddlePredictor;
97 98 99
using paddle::PaddleTensor;
using paddle::PassStrategy;
using paddle::ZeroCopyTensor;
F
flame 已提交
100

101 102
namespace {
void BindPaddleDType(py::module *m);
103
void BindPaddleDataLayout(py::module *m);
104 105 106 107 108 109
void BindPaddleBuf(py::module *m);
void BindPaddleTensor(py::module *m);
void BindPaddlePlace(py::module *m);
void BindPaddlePredictor(py::module *m);
void BindNativeConfig(py::module *m);
void BindNativePredictor(py::module *m);
110
void BindLiteNNAdapterConfig(py::module *m);
111 112
void BindAnalysisConfig(py::module *m);
void BindAnalysisPredictor(py::module *m);
113 114
void BindZeroCopyTensor(py::module *m);
void BindPaddlePassBuilder(py::module *m);
W
Wilber 已提交
115 116 117
void BindPaddleInferPredictor(py::module *m);
void BindPaddleInferTensor(py::module *m);
void BindPredictorPool(py::module *m);
F
flame 已提交
118

119
#ifdef PADDLE_WITH_MKLDNN
120
void BindMkldnnQuantizerConfig(py::module *m);
121
#endif
122 123

template <typename T>
124
PaddleBuf PaddleBufCreate(py::array_t<T, py::array::c_style> data) {
125
  PaddleBuf buf(data.size() * sizeof(T));
W
Wilber 已提交
126 127
  std::copy_n(static_cast<const T *>(data.data()),
              data.size(),
128 129 130 131 132
              static_cast<T *>(buf.data()));
  return buf;
}

template <typename T>
133 134
void PaddleBufReset(PaddleBuf &buf,                             // NOLINT
                    py::array_t<T, py::array::c_style> data) {  // NOLINT
135
  buf.Resize(data.size() * sizeof(T));
W
Wilber 已提交
136 137
  std::copy_n(static_cast<const T *>(data.data()),
              data.size(),
138 139 140 141 142
              static_cast<T *>(buf.data()));
}

template <typename T>
PaddleTensor PaddleTensorCreate(
143
    py::array_t<T, py::array::c_style> data,
144
    const std::string name = "",
W
Wilber 已提交
145 146
    const std::vector<std::vector<size_t>> &lod = {},
    bool copy = true) {
147 148 149 150
  PaddleTensor tensor;

  if (copy) {
    PaddleBuf buf(data.size() * sizeof(T));
W
Wilber 已提交
151 152
    std::copy_n(static_cast<const T *>(data.data()),
                data.size(),
153 154 155 156 157 158
                static_cast<T *>(buf.data()));
    tensor.data = std::move(buf);
  } else {
    tensor.data = PaddleBuf(data.mutable_data(), data.size() * sizeof(T));
  }

159
  tensor.dtype = inference::PaddleTensorGetDType<T>();
160 161 162 163 164 165 166 167
  tensor.name = name;
  tensor.lod = lod;
  tensor.shape.resize(data.ndim());
  std::copy_n(data.shape(), data.ndim(), tensor.shape.begin());

  return tensor;
}

168
py::dtype PaddleDTypeToNumpyDType(PaddleDType dtype) {
169
  py::dtype dt;
170
  switch (dtype) {
171 172 173 174 175 176
    case PaddleDType::INT32:
      dt = py::dtype::of<int32_t>();
      break;
    case PaddleDType::INT64:
      dt = py::dtype::of<int64_t>();
      break;
177 178 179
    case PaddleDType::FLOAT64:
      dt = py::dtype::of<double>();
      break;
180 181 182
    case PaddleDType::FLOAT32:
      dt = py::dtype::of<float>();
      break;
183
    case PaddleDType::FLOAT16:
184
      dt = py::dtype::of<phi::dtype::float16>();
185
      break;
W
Wilber 已提交
186 187 188
    case PaddleDType::UINT8:
      dt = py::dtype::of<uint8_t>();
      break;
189 190 191 192 193
    case PaddleDType::INT8:
      dt = py::dtype::of<int8_t>();
      break;
    case PaddleDType::BOOL:
      dt = py::dtype::of<bool>();
194
      break;
195
    default:
196
      PADDLE_THROW(platform::errors::Unimplemented(
197 198
          "Unsupported data type. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
199
  }
200 201 202 203 204 205 206 207 208 209

  return dt;
}

py::array PaddleTensorGetData(PaddleTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.dtype);
  return py::array(std::move(dt), {tensor.shape}, tensor.data.data());
}

template <typename T>
210 211
void ZeroCopyTensorCreate(ZeroCopyTensor &tensor,  // NOLINT
                          py::array_t<T, py::array::c_style> data) {
212 213 214 215 216 217
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.copy_from_cpu(static_cast<const T *>(data.data()));
}

S
Steffy-zxf 已提交
218 219 220 221 222 223 224 225 226 227 228 229
/// \brief Experimental interface.
/// Create the Strings tensor from data.
/// \param tensor The tensor will be created and
/// the tensor value is same as data.
/// \param data The input text.
void ZeroCopyStringTensorCreate(ZeroCopyTensor &tensor,  // NOLINT
                                const paddle_infer::Strings *data) {
  size_t shape = data->size();
  tensor.ReshapeStrings(shape);
  tensor.copy_strings_from_cpu(data);
}

W
Wilber 已提交
230
template <typename T>
231 232
void PaddleInferTensorCreate(paddle_infer::Tensor &tensor,  // NOLINT
                             py::array_t<T, py::array::c_style> data) {
W
Wilber 已提交
233 234 235 236 237 238
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.CopyFromCpu(static_cast<const T *>(data.data()));
}

239 240 241 242 243 244 245 246 247 248 249 250
paddle_infer::PlaceType ToPaddleInferPlace(
    phi::AllocationType allocation_type) {
  if (allocation_type == phi::AllocationType::CPU) {
    return paddle_infer::PlaceType::kCPU;
  } else if (allocation_type == phi::AllocationType::GPU) {
    return paddle_infer::PlaceType::kGPU;
  } else {
    return paddle_infer::PlaceType::kCPU;
  }
}

void PaddleInferShareExternalData(paddle_infer::Tensor &tensor,  // NOLINT
251
                                  phi::DenseTensor input_tensor) {
252 253 254 255
  std::vector<int> shape;
  for (int i = 0; i < input_tensor.dims().size(); ++i) {
    shape.push_back(input_tensor.dims()[i]);
  }
256 257 258 259 260 261
  if (input_tensor.dtype() == phi::DataType::FLOAT64) {
    tensor.ShareExternalData(
        static_cast<double *>(input_tensor.data()),
        shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else if (input_tensor.dtype() == phi::DataType::FLOAT32) {
262
    tensor.ShareExternalData(
W
Wilber 已提交
263 264
        static_cast<float *>(input_tensor.data()),
        shape,
265 266 267
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else if (input_tensor.dtype() == phi::DataType::FLOAT16) {
    tensor.ShareExternalData(
268
        static_cast<phi::dtype::float16 *>(input_tensor.data()),
W
Wilber 已提交
269
        shape,
270
        ToPaddleInferPlace(input_tensor.place().GetType()));
271 272 273 274 275 276 277 278 279 280 281 282 283
  } else if (input_tensor.dtype() == phi::DataType::INT32) {
    tensor.ShareExternalData(
        static_cast<int32_t *>(input_tensor.data()),
        shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else if (input_tensor.dtype() == phi::DataType::INT64) {
    tensor.ShareExternalData(
        static_cast<int64_t *>(input_tensor.data()),
        shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported data type. Now share_external_data only supports INT32, "
284
        "INT64, FLOAT64, FLOAT32 and FLOAT16."));
285 286 287
  }
}

288 289
void PaddleTensorShareExternalData(paddle_infer::Tensor &tensor,  // NOLINT
                                   paddle::Tensor &&paddle_tensor) {
290 291 292 293
  std::vector<int> shape;
  for (int i = 0; i < paddle_tensor.dims().size(); ++i) {
    shape.push_back(paddle_tensor.dims()[i]);
  }
294 295 296 297 298 299 300

  if (paddle_tensor.dtype() == phi::DataType::FLOAT64) {
    tensor.ShareExternalData(
        static_cast<double *>(paddle_tensor.data<double>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
  } else if (paddle_tensor.dtype() == phi::DataType::FLOAT32) {
301 302 303 304
    tensor.ShareExternalData(
        static_cast<float *>(paddle_tensor.data<float>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
305
  } else if (paddle_tensor.dtype() == phi::DataType::FLOAT16) {
306 307 308 309 310
    tensor.ShareExternalData(
        static_cast<paddle::platform::float16 *>(
            paddle_tensor.data<paddle::platform::float16>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
311
  } else if (paddle_tensor.dtype() == phi::DataType::INT32) {
312 313 314 315
    tensor.ShareExternalData(
        static_cast<int32_t *>(paddle_tensor.data<int32_t>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
316
  } else if (paddle_tensor.dtype() == phi::DataType::INT64) {
317 318 319 320 321 322 323 324
    tensor.ShareExternalData(
        static_cast<int64_t *>(paddle_tensor.data<int64_t>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported data type. Now share_external_data only supports INT32, "
        "INT64, FLOAT32 and FLOAT16."));
325 326 327
  }
}

S
Steffy-zxf 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340
/// \brief Experimental interface.
/// Create the Strings tensor from data.
/// \param tensor The tensor will be created and
/// the tensor value is same as data.
/// \param data The input text.
void PaddleInferStringTensorCreate(paddle_infer::Tensor &tensor,  // NOLINT
                                   const paddle_infer::Strings *data) {
  VLOG(3) << "Create PaddleInferTensor, dtype = Strings ";
  size_t shape = data->size();
  tensor.ReshapeStrings(shape);
  tensor.CopyStringsFromCpu(data);
}

341 342 343 344 345 346 347 348 349
size_t PaddleGetDTypeSize(PaddleDType dt) {
  size_t size{0};
  switch (dt) {
    case PaddleDType::INT32:
      size = sizeof(int32_t);
      break;
    case PaddleDType::INT64:
      size = sizeof(int64_t);
      break;
350 351 352
    case PaddleDType::FLOAT64:
      size = sizeof(double);
      break;
353 354 355
    case PaddleDType::FLOAT32:
      size = sizeof(float);
      break;
356
    case PaddleDType::FLOAT16:
357
      size = sizeof(phi::dtype::float16);
358 359 360 361 362 363 364 365 366 367
      break;
    case PaddleDType::INT8:
      size = sizeof(int8_t);
      break;
    case PaddleDType::UINT8:
      size = sizeof(uint8_t);
      break;
    case PaddleDType::BOOL:
      size = sizeof(bool);
      break;
368
    default:
369
      PADDLE_THROW(platform::errors::Unimplemented(
370 371
          "Unsupported data t ype. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  }
  return size;
}

py::array ZeroCopyTensorToNumpy(ZeroCopyTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.copy_to_cpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.copy_to_cpu(static_cast<int64_t *>(array.mutable_data()));
      break;
389 390 391
    case PaddleDType::FLOAT64:
      tensor.copy_to_cpu<double>(static_cast<double *>(array.mutable_data()));
      break;
392 393 394
    case PaddleDType::FLOAT32:
      tensor.copy_to_cpu<float>(static_cast<float *>(array.mutable_data()));
      break;
395
    case PaddleDType::FLOAT16:
396 397
      tensor.copy_to_cpu<phi::dtype::float16>(
          static_cast<phi::dtype::float16 *>(array.mutable_data()));
398
      break;
W
Wilber 已提交
399 400 401
    case PaddleDType::UINT8:
      tensor.copy_to_cpu<uint8_t>(static_cast<uint8_t *>(array.mutable_data()));
      break;
402 403 404
    case PaddleDType::INT8:
      tensor.copy_to_cpu<int8_t>(static_cast<int8_t *>(array.mutable_data()));
      break;
405 406 407
    case PaddleDType::BOOL:
      tensor.copy_to_cpu<bool>(static_cast<bool *>(array.mutable_data()));
      break;
408
    default:
409
      PADDLE_THROW(platform::errors::Unimplemented(
410 411
          "Unsupported data type. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
412 413
  }
  return array;
414
}
415

W
Wilber 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428
py::array PaddleInferTensorToNumpy(paddle_infer::Tensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.CopyToCpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.CopyToCpu(static_cast<int64_t *>(array.mutable_data()));
      break;
429 430 431
    case PaddleDType::FLOAT64:
      tensor.CopyToCpu<double>(static_cast<double *>(array.mutable_data()));
      break;
W
Wilber 已提交
432 433 434
    case PaddleDType::FLOAT32:
      tensor.CopyToCpu<float>(static_cast<float *>(array.mutable_data()));
      break;
435
    case PaddleDType::FLOAT16:
436 437
      tensor.CopyToCpu<phi::dtype::float16>(
          static_cast<phi::dtype::float16 *>(array.mutable_data()));
438
      break;
439 440 441 442 443 444
    case PaddleDType::UINT8:
      tensor.CopyToCpu(static_cast<uint8_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT8:
      tensor.CopyToCpu(static_cast<int8_t *>(array.mutable_data()));
      break;
445 446 447
    case PaddleDType::BOOL:
      tensor.CopyToCpu(static_cast<bool *>(array.mutable_data()));
      break;
W
Wilber 已提交
448 449
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
450 451
          "Unsupported data t ype. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
W
Wilber 已提交
452 453 454 455
  }
  return array;
}

456 457 458 459 460
py::bytes SerializePDTensorToBytes(PaddleTensor &tensor) {  // NOLINT
  std::stringstream ss;
  paddle::inference::SerializePDTensorToStream(&ss, tensor);
  return static_cast<py::bytes>(ss.str());
}
461

462
void CopyPaddleInferTensor(paddle_infer::Tensor &dst,  // NOLINT
463 464 465 466
                           const paddle_infer::Tensor &src) {
  return paddle_infer::contrib::TensorUtils::CopyTensor(&dst, src);
}

467
}  // namespace
468

F
flame 已提交
469 470
void BindInferenceApi(py::module *m) {
  BindPaddleDType(m);
471
  BindPaddleDataLayout(m);
F
flame 已提交
472 473 474 475 476 477
  BindPaddleBuf(m);
  BindPaddleTensor(m);
  BindPaddlePlace(m);
  BindPaddlePredictor(m);
  BindNativeConfig(m);
  BindNativePredictor(m);
478
  BindLiteNNAdapterConfig(m);
F
flame 已提交
479 480
  BindAnalysisConfig(m);
  BindAnalysisPredictor(m);
W
Wilber 已提交
481
  BindPaddleInferPredictor(m);
482
  BindZeroCopyTensor(m);
W
Wilber 已提交
483
  BindPaddleInferTensor(m);
484
  BindPaddlePassBuilder(m);
W
Wilber 已提交
485
  BindPredictorPool(m);
486 487 488
#ifdef PADDLE_WITH_MKLDNN
  BindMkldnnQuantizerConfig(m);
#endif
F
flame 已提交
489
  m->def("create_paddle_predictor",
W
Wilber 已提交
490 491
         &paddle::CreatePaddlePredictor<AnalysisConfig>,
         py::arg("config"));
F
flame 已提交
492
  m->def("create_paddle_predictor",
W
Wilber 已提交
493 494
         &paddle::CreatePaddlePredictor<NativeConfig>,
         py::arg("config"));
495 496 497 498 499 500 501
  m->def("create_predictor",
         [](const paddle_infer::Config &config)
             -> std::unique_ptr<paddle_infer::Predictor> {
           auto pred = std::unique_ptr<paddle_infer::Predictor>(
               new paddle_infer::Predictor(config));
           return pred;
         });
502 503 504 505 506 507
  m->def(
      "_get_phi_kernel_name",
      [](const std::string &fluid_op_name) {
        return phi::TransToPhiKernelName(fluid_op_name);
      },
      py::return_value_policy::reference);
508
  m->def("copy_tensor", &CopyPaddleInferTensor);
F
flame 已提交
509
  m->def("paddle_dtype_size", &paddle::PaddleDtypeSize);
510
  m->def("paddle_tensor_to_bytes", &SerializePDTensorToBytes);
W
Wilber 已提交
511
  m->def("get_version", &paddle_infer::GetVersion);
512 513
  m->def("get_trt_compile_version", &paddle_infer::GetTrtCompileVersion);
  m->def("get_trt_runtime_version", &paddle_infer::GetTrtRuntimeVersion);
W
Wilber 已提交
514
  m->def("get_num_bytes_of_data_type", &paddle_infer::GetNumBytesOfDataType);
515 516 517 518 519 520 521 522 523 524
  m->def("convert_to_mixed_precision_bind",
         &paddle_infer::ConvertToMixedPrecision,
         py::arg("model_file"),
         py::arg("params_file"),
         py::arg("mixed_model_file"),
         py::arg("mixed_params_file"),
         py::arg("mixed_precision"),
         py::arg("backend"),
         py::arg("keep_io_types") = true,
         py::arg("black_list") = std::unordered_set<std::string>());
F
flame 已提交
525 526
}

527
namespace {
F
flame 已提交
528 529
void BindPaddleDType(py::module *m) {
  py::enum_<PaddleDType>(*m, "PaddleDType")
530
      .value("FLOAT64", PaddleDType::FLOAT64)
F
flame 已提交
531
      .value("FLOAT32", PaddleDType::FLOAT32)
532
      .value("FLOAT16", PaddleDType::FLOAT16)
533
      .value("INT64", PaddleDType::INT64)
534 535 536 537
      .value("INT32", PaddleDType::INT32)
      .value("UINT8", PaddleDType::UINT8)
      .value("INT8", PaddleDType::INT8)
      .value("BOOL", PaddleDType::BOOL);
F
flame 已提交
538 539
}

540 541 542 543 544 545 546 547
void BindPaddleDataLayout(py::module *m) {
  py::enum_<PaddleDataLayout>(*m, "PaddleDataLayout")
      .value("UNK", PaddleDataLayout::kUNK)
      .value("Any", PaddleDataLayout::kAny)
      .value("NHWC", PaddleDataLayout::kNHWC)
      .value("NCHW", PaddleDataLayout::kNCHW);
}

F
flame 已提交
548 549 550 551 552 553
void BindPaddleBuf(py::module *m) {
  py::class_<PaddleBuf>(*m, "PaddleBuf")
      .def(py::init<size_t>())
      .def(py::init([](std::vector<float> &data) {
        auto buf = PaddleBuf(data.size() * sizeof(float));
        std::memcpy(buf.data(), static_cast<void *>(data.data()), buf.length());
G
Gabor Buella 已提交
554
        return buf;
F
flame 已提交
555
      }))
556 557 558
      .def(py::init(&PaddleBufCreate<int32_t>))
      .def(py::init(&PaddleBufCreate<int64_t>))
      .def(py::init(&PaddleBufCreate<float>))
F
flame 已提交
559 560 561 562 563 564
      .def("resize", &PaddleBuf::Resize)
      .def("reset",
           [](PaddleBuf &self, std::vector<float> &data) {
             self.Resize(data.size() * sizeof(float));
             std::memcpy(self.data(), data.data(), self.length());
           })
565 566 567
      .def("reset", &PaddleBufReset<int32_t>)
      .def("reset", &PaddleBufReset<int64_t>)
      .def("reset", &PaddleBufReset<float>)
568
      .def("empty", &PaddleBuf::empty)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
      .def("tolist",
           [](PaddleBuf &self, const std::string &dtype) -> py::list {
             py::list l;
             if (dtype == "int32") {
               auto *data = static_cast<int32_t *>(self.data());
               auto size = self.length() / sizeof(int32_t);
               l = py::cast(std::vector<int32_t>(data, data + size));
             } else if (dtype == "int64") {
               auto *data = static_cast<int64_t *>(self.data());
               auto size = self.length() / sizeof(int64_t);
               l = py::cast(std::vector<int64_t>(data, data + size));
             } else if (dtype == "float32") {
               auto *data = static_cast<float *>(self.data());
               auto size = self.length() / sizeof(float);
               l = py::cast(std::vector<float>(data, data + size));
             } else {
585 586 587
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Unsupported data type. Now only supports INT32, INT64 and "
                   "FLOAT32."));
588 589 590
             }
             return l;
           })
F
flame 已提交
591 592 593 594 595 596 597 598 599 600
      .def("float_data",
           [](PaddleBuf &self) -> std::vector<float> {
             auto *data = static_cast<float *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
      .def("int64_data",
           [](PaddleBuf &self) -> std::vector<int64_t> {
             int64_t *data = static_cast<int64_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
601 602 603 604
      .def("int32_data",
           [](PaddleBuf &self) -> std::vector<int32_t> {
             int32_t *data = static_cast<int32_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
F
flame 已提交
605 606 607 608 609 610 611
           })
      .def("length", &PaddleBuf::length);
}

void BindPaddleTensor(py::module *m) {
  py::class_<PaddleTensor>(*m, "PaddleTensor")
      .def(py::init<>())
W
Wilber 已提交
612 613
      .def(py::init(&PaddleTensorCreate<int32_t>),
           py::arg("data"),
614 615 616
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
W
Wilber 已提交
617 618
      .def(py::init(&PaddleTensorCreate<int64_t>),
           py::arg("data"),
619 620 621
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
W
Wilber 已提交
622 623
      .def(py::init(&PaddleTensorCreate<float>),
           py::arg("data"),
624 625 626 627
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def("as_ndarray", &PaddleTensorGetData)
F
flame 已提交
628 629 630 631 632 633 634 635 636 637 638
      .def_readwrite("name", &PaddleTensor::name)
      .def_readwrite("shape", &PaddleTensor::shape)
      .def_readwrite("data", &PaddleTensor::data)
      .def_readwrite("dtype", &PaddleTensor::dtype)
      .def_readwrite("lod", &PaddleTensor::lod);
}

void BindPaddlePlace(py::module *m) {
  py::enum_<PaddlePlace>(*m, "PaddlePlace")
      .value("UNK", PaddlePlace::kUNK)
      .value("CPU", PaddlePlace::kCPU)
639
      .value("GPU", PaddlePlace::kGPU)
W
Wilber 已提交
640
      .value("XPU", PaddlePlace::kXPU)
641
      .value("CUSTOM", PaddlePlace::kCUSTOM);
F
flame 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654
}

void BindPaddlePredictor(py::module *m) {
  auto paddle_predictor = py::class_<PaddlePredictor>(*m, "PaddlePredictor");
  paddle_predictor
      .def("run",
           [](PaddlePredictor &self, const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &PaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &PaddlePredictor::GetOutputTensor)
655 656
      .def("get_input_names", &PaddlePredictor::GetInputNames)
      .def("get_output_names", &PaddlePredictor::GetOutputNames)
F
flame 已提交
657
      .def("zero_copy_run", &PaddlePredictor::ZeroCopyRun)
658
      .def("clone", [](PaddlePredictor &self) { return self.Clone(nullptr); })
659 660 661
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](PaddlePredictor &self, phi::CUDAStream &stream) {
662
             return self.Clone(stream.raw_stream());
663 664
           })
#endif
665
      .def("get_serialized_program", &PaddlePredictor::GetSerializedProgram);
F
flame 已提交
666 667 668 669 670 671 672 673 674 675

  auto config = py::class_<PaddlePredictor::Config>(paddle_predictor, "Config");
  config.def(py::init<>())
      .def_readwrite("model_dir", &PaddlePredictor::Config::model_dir);
}

void BindNativeConfig(py::module *m) {
  py::class_<NativeConfig, PaddlePredictor::Config>(*m, "NativeConfig")
      .def(py::init<>())
      .def_readwrite("use_gpu", &NativeConfig::use_gpu)
676
      .def_readwrite("use_xpu", &NativeConfig::use_xpu)
F
flame 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
      .def_readwrite("device", &NativeConfig::device)
      .def_readwrite("fraction_of_gpu_memory",
                     &NativeConfig::fraction_of_gpu_memory)
      .def_readwrite("prog_file", &NativeConfig::prog_file)
      .def_readwrite("param_file", &NativeConfig::param_file)
      .def_readwrite("specify_input_name", &NativeConfig::specify_input_name)
      .def("set_cpu_math_library_num_threads",
           &NativeConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &NativeConfig::cpu_math_library_num_threads);
}

void BindNativePredictor(py::module *m) {
  py::class_<NativePaddlePredictor, PaddlePredictor>(*m,
                                                     "NativePaddlePredictor")
      .def(py::init<const NativeConfig &>())
      .def("init", &NativePaddlePredictor::Init)
      .def("run",
           [](NativePaddlePredictor &self,
              const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &NativePaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &NativePaddlePredictor::GetOutputTensor)
      .def("zero_copy_run", &NativePaddlePredictor::ZeroCopyRun)
704 705
      .def("clone",
           [](NativePaddlePredictor &self) { return self.Clone(nullptr); })
706 707 708
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](NativePaddlePredictor &self, phi::CUDAStream &stream) {
709
             return self.Clone(stream.raw_stream());
710 711
           })
#endif
W
Wilber 已提交
712 713
      .def("scope",
           &NativePaddlePredictor::scope,
F
flame 已提交
714 715 716 717
           py::return_value_policy::reference);
}

void BindAnalysisConfig(py::module *m) {
718 719 720 721 722
  py::class_<AnalysisConfig> analysis_config(*m, "AnalysisConfig");

  py::enum_<AnalysisConfig::Precision>(analysis_config, "Precision")
      .value("Float32", AnalysisConfig::Precision::kFloat32)
      .value("Int8", AnalysisConfig::Precision::kInt8)
Z
Zhaolong Xing 已提交
723
      .value("Half", AnalysisConfig::Precision::kHalf)
724 725 726
      .value("Bfloat16", AnalysisConfig::Precision::kBf16)
      .export_values();

727 728
  analysis_config.def(py::init<>())
      .def(py::init<const AnalysisConfig &>())
F
flame 已提交
729 730
      .def(py::init<const std::string &>())
      .def(py::init<const std::string &, const std::string &>())
731
      .def("summary", &AnalysisConfig::Summary)
W
Wilber 已提交
732 733 734
      .def("set_model",
           (void(AnalysisConfig::*)(const std::string &)) &
               AnalysisConfig::SetModel)
735 736 737
      .def("set_model",
           (void(AnalysisConfig::*)(const std::string &, const std::string &)) &
               AnalysisConfig::SetModel)
F
flame 已提交
738 739 740 741 742
      .def("set_prog_file", &AnalysisConfig::SetProgFile)
      .def("set_params_file", &AnalysisConfig::SetParamsFile)
      .def("model_dir", &AnalysisConfig::model_dir)
      .def("prog_file", &AnalysisConfig::prog_file)
      .def("params_file", &AnalysisConfig::params_file)
W
Wilber 已提交
743 744 745
      .def("enable_use_gpu",
           &AnalysisConfig::EnableUseGpu,
           py::arg("memory_pool_init_size_mb"),
746 747
           py::arg("device_id") = 0,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32)
748
      .def("exp_enable_use_cutlass", &AnalysisConfig::Exp_EnableUseCutlass)
749 750
      .def("exp_disable_mixed_precision_ops",
           &AnalysisConfig::Exp_DisableMixedPrecisionOps)
751 752 753 754 755 756
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("set_exec_stream",
           [](AnalysisConfig &self, phi::CUDAStream &stream) {
             self.SetExecStream(stream.raw_stream());
           })
#endif
W
Wilber 已提交
757 758
      .def("enable_xpu",
           &AnalysisConfig::EnableXpu,
W
Wilber 已提交
759
           py::arg("l3_workspace_size") = 16 * 1024 * 1024,
W
Wilber 已提交
760 761 762 763
           py::arg("locked") = false,
           py::arg("autotune") = true,
           py::arg("autotune_file") = "",
           py::arg("precision") = "int16",
764 765
           py::arg("adaptive_seqlen") = false,
           py::arg("enable_multi_stream") = false)
W
Wilber 已提交
766 767
      .def("set_xpu_device_id",
           &AnalysisConfig::SetXpuDeviceId,
768
           py::arg("device_id") = 0)
Z
zhupengyang 已提交
769 770 771 772 773
      .def(
          "set_xpu_config",
          &AnalysisConfig::SetXpuConfig,
          py::arg("quant_post_dynamic_weight_bits") = -1,
          py::arg("quant_post_dynamic_op_types") = std::vector<std::string>({}))
774 775 776
      .def("enable_custom_device",
           &AnalysisConfig::EnableCustomDevice,
           py::arg("device_type"),
777 778
           py::arg("device_id") = 0,
           py::arg("precision") = AnalysisConfig::Precision::kFloat32)
W
Wilber 已提交
779 780 781 782
      .def("enable_ipu",
           &AnalysisConfig::EnableIpu,
           py::arg("ipu_device_num") = 1,
           py::arg("ipu_micro_batch_size") = 1,
783 784
           py::arg("ipu_enable_pipelining") = false,
           py::arg("ipu_batches_per_step") = 1)
W
Wilber 已提交
785 786 787 788
      .def("set_ipu_config",
           &AnalysisConfig::SetIpuConfig,
           py::arg("ipu_enable_fp16") = false,
           py::arg("ipu_replica_num") = 1,
789
           py::arg("ipu_available_memory_proportion") = 1.0,
790 791
           py::arg("ipu_enable_half_partial") = false,
           py::arg("ipu_enable_model_runtime_executor") = false)
792 793 794 795 796 797 798 799
      .def("set_ipu_custom_info",
           &AnalysisConfig::SetIpuCustomInfo,
           py::arg("ipu_custom_ops_info") =
               std::vector<std::vector<std::string>>({}),
           py::arg("ipu_custom_patterns") = std::map<std::string, bool>({}))
      .def("load_ipu_config",
           &AnalysisConfig::LoadIpuConfig,
           py::arg("config_path"))
F
flame 已提交
800
      .def("disable_gpu", &AnalysisConfig::DisableGpu)
801 802 803
      .def("enable_onnxruntime", &AnalysisConfig::EnableONNXRuntime)
      .def("disable_onnxruntime", &AnalysisConfig::DisableONNXRuntime)
      .def("onnxruntime_enabled", &AnalysisConfig::use_onnxruntime)
804
      .def("use_opencl", &AnalysisConfig::use_opencl)
805
      .def("enable_ort_optimization", &AnalysisConfig::EnableORTOptimization)
F
flame 已提交
806
      .def("use_gpu", &AnalysisConfig::use_gpu)
807
      .def("use_xpu", &AnalysisConfig::use_xpu)
F
flame 已提交
808
      .def("gpu_device_id", &AnalysisConfig::gpu_device_id)
809
      .def("xpu_device_id", &AnalysisConfig::xpu_device_id)
F
flame 已提交
810 811 812 813
      .def("memory_pool_init_size_mb",
           &AnalysisConfig::memory_pool_init_size_mb)
      .def("fraction_of_gpu_memory_for_pool",
           &AnalysisConfig::fraction_of_gpu_memory_for_pool)
W
Wilber 已提交
814 815
      .def("switch_ir_optim",
           &AnalysisConfig::SwitchIrOptim,
F
flame 已提交
816 817
           py::arg("x") = true)
      .def("ir_optim", &AnalysisConfig::ir_optim)
W
Wilber 已提交
818 819
      .def("enable_memory_optim",
           &AnalysisConfig::EnableMemoryOptim,
820
           py::arg("x") = true)
821
      .def("enable_profile", &AnalysisConfig::EnableProfile)
822
      .def("disable_glog_info", &AnalysisConfig::DisableGlogInfo)
823
      .def("glog_info_disabled", &AnalysisConfig::glog_info_disabled)
824 825 826
      .def("enable_save_optim_model",
           &AnalysisConfig::EnableSaveOptimModel,
           py::arg("save_optimized_model") = false)
827
      .def("set_optim_cache_dir", &AnalysisConfig::SetOptimCacheDir)
W
Wilber 已提交
828 829
      .def("switch_use_feed_fetch_ops",
           &AnalysisConfig::SwitchUseFeedFetchOps,
F
flame 已提交
830 831 832 833
           py::arg("x") = true)
      .def("use_feed_fetch_ops_enabled",
           &AnalysisConfig::use_feed_fetch_ops_enabled)
      .def("switch_specify_input_names",
W
Wilber 已提交
834 835
           &AnalysisConfig::SwitchSpecifyInputNames,
           py::arg("x") = true)
F
flame 已提交
836
      .def("specify_input_name", &AnalysisConfig::specify_input_name)
837 838 839
      .def("enable_low_precision_io",
           &AnalysisConfig::EnableLowPrecisionIO,
           py::arg("x") = true)
W
Wilber 已提交
840 841
      .def("enable_tensorrt_engine",
           &AnalysisConfig::EnableTensorRtEngine,
842
           py::arg("workspace_size") = 1 << 30,
W
Wilber 已提交
843
           py::arg("max_batch_size") = 1,
844
           py::arg("min_subgraph_size") = 3,
N
nhzlx 已提交
845
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
846
           py::arg("use_static") = false,
W
Wilber 已提交
847 848
           py::arg("use_calib_mode") = true,
           py::arg("use_cuda_graph") = false)
849 850 851 852
      .def("enable_tensorrt_memory_optim",
           &AnalysisConfig::EnableTensorRTMemoryOptim,
           py::arg("engine_memory_sharing") = true,
           py::arg("sharing_identifier") = 0)
853
      .def("tensorrt_precision_mode", &AnalysisConfig::tensorrt_precision_mode)
854 855
      .def("set_trt_dynamic_shape_info",
           &AnalysisConfig::SetTRTDynamicShapeInfo,
856 857 858 859 860
           py::arg("min_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("max_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("optim_input_shape") =
861 862
               std::map<std::string, std::vector<int>>({}),
           py::arg("disable_trt_plugin_fp16") = false)
863 864
      .def("tensorrt_dynamic_shape_enabled",
           &AnalysisConfig::tensorrt_dynamic_shape_enabled)
865 866 867
      .def("enable_tensorrt_varseqlen", &AnalysisConfig::EnableVarseqlen)
      .def("tensorrt_varseqlen_enabled",
           &AnalysisConfig::tensorrt_varseqlen_enabled)
868 869 870 871 872
      .def("collect_shape_range_info", &AnalysisConfig::CollectShapeRangeInfo)
      .def("shape_range_info_path", &AnalysisConfig::shape_range_info_path)
      .def("shape_range_info_collected",
           &AnalysisConfig::shape_range_info_collected)
      .def("enable_tuned_tensorrt_dynamic_shape",
873 874 875
           &AnalysisConfig::EnableTunedTensorRtDynamicShape,
           py::arg("shape_range_info_path") = "",
           py::arg("allow_build_at_runtime") = true)
876 877 878 879
      .def("tuned_tensorrt_dynamic_shape",
           &AnalysisConfig::tuned_tensorrt_dynamic_shape)
      .def("trt_allow_build_at_runtime",
           &AnalysisConfig::trt_allow_build_at_runtime)
880
      .def("exp_disable_tensorrt_ops", &AnalysisConfig::Exp_DisableTensorRtOPs)
W
Wilber 已提交
881 882
      .def("enable_tensorrt_dla",
           &AnalysisConfig::EnableTensorRtDLA,
883 884
           py::arg("dla_core") = 0)
      .def("tensorrt_dla_enabled", &AnalysisConfig::tensorrt_dla_enabled)
885 886 887 888
      .def("enable_tensorrt_inspector",
           &AnalysisConfig::EnableTensorRtInspector)
      .def("tensorrt_inspector_enabled",
           &AnalysisConfig::tensorrt_inspector_enabled)
F
flame 已提交
889
      .def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled)
W
Wilber 已提交
890 891
      .def("enable_dlnne",
           &AnalysisConfig::EnableDlnne,
D
denglin-github 已提交
892 893 894 895 896 897 898 899 900 901
           py::arg("min_subgraph_size") = 3,
           py::arg("max_batch_size") = 1,
           py::arg("use_static_batch") = false,
           py::arg("weight_share_mode") = "0",
           py::arg("disable_nodes_by_outputs") =
               std::unordered_set<std::string>(),
           py::arg("input_shape_dict") =
               std::map<std::string, std::vector<int64_t>>(),
           py::arg("use_calib_mode") = false,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32)
W
Wilber 已提交
902 903
      .def("enable_lite_engine",
           &AnalysisConfig::EnableLiteEngine,
904
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
905
           py::arg("zero_copy") = false,
906 907
           py::arg("passes_filter") = std::vector<std::string>(),
           py::arg("ops_filter") = std::vector<std::string>())
908
      .def("enable_opencl", &AnalysisConfig::EnableOpenCL)
909
      .def("lite_engine_enabled", &AnalysisConfig::lite_engine_enabled)
W
Wilber 已提交
910 911
      .def("switch_ir_debug",
           &AnalysisConfig::SwitchIrDebug,
F
flame 已提交
912 913 914 915 916 917 918 919
           py::arg("x") = true)
      .def("enable_mkldnn", &AnalysisConfig::EnableMKLDNN)
      .def("mkldnn_enabled", &AnalysisConfig::mkldnn_enabled)
      .def("set_cpu_math_library_num_threads",
           &AnalysisConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &AnalysisConfig::cpu_math_library_num_threads)
      .def("to_native_config", &AnalysisConfig::ToNativeConfig)
920
      .def("enable_quantizer", &AnalysisConfig::EnableMkldnnQuantizer)
921
      .def("enable_mkldnn_bfloat16", &AnalysisConfig::EnableMkldnnBfloat16)
922
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
923 924
      .def("quantizer_config",
           &AnalysisConfig::mkldnn_quantizer_config,
925
           py::return_value_policy::reference)
W
Wilber 已提交
926 927
      .def("set_mkldnn_cache_capacity",
           &AnalysisConfig::SetMkldnnCacheCapacity,
928
           py::arg("capacity") = 0)
929
      .def("set_bfloat16_op", &AnalysisConfig::SetBfloat16Op)
W
Wilber 已提交
930 931
      .def("enable_mkldnn_int8",
           &AnalysisConfig::EnableMkldnnInt8,
B
baoachun 已提交
932 933 934
           py::arg("mkldnn_int8_enabled_op_types") =
               std::unordered_set<std::string>({}))
      .def("mkldnn_int8_enabled", &AnalysisConfig::mkldnn_int8_enabled)
P
Paulina Gacek 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
      .def("disable_mkldnn_fc_passes",
           &AnalysisConfig::DisableMkldnnFcPasses,
           R"DOC(
           Disable Mkldnn FC
           Args:
                None.
           Returns:
                None.
           Examples:
               .. code-block:: python
                from paddle.inference import Config

                config = Config("")
                config.enable_mkldnn()
                config.disable_mkldnn_fc_passes()
           )DOC")
951
#endif
F
flame 已提交
952 953 954
      .def("set_mkldnn_op", &AnalysisConfig::SetMKLDNNOp)
      .def("set_model_buffer", &AnalysisConfig::SetModelBuffer)
      .def("model_from_memory", &AnalysisConfig::model_from_memory)
955 956 957 958
      .def("delete_pass",
           [](AnalysisConfig &self, const std::string &pass) {
             self.pass_builder()->DeletePass(pass);
           })
959 960 961 962 963 964
      .def(
          "pass_builder",
          [](AnalysisConfig &self) {
            return dynamic_cast<PaddlePassBuilder *>(self.pass_builder());
          },
          py::return_value_policy::reference)
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
      .def("nnadapter", &AnalysisConfig::NNAdapter)
      .def("set_dist_config", &AnalysisConfig::SetDistConfig)
      .def("dist_config", &AnalysisConfig::dist_config);

  py::class_<DistConfig>(*m, "DistConfig")
      .def(py::init<>())
      .def("set_carrier_id", &DistConfig::SetCarrierId)
      .def("set_comm_init_config", &DistConfig::SetCommInitConfig)
      .def("set_endpoints", &DistConfig::SetEndpoints)
      .def("set_ranks", &DistConfig::SetRanks)
      .def("enable_dist_model", &DistConfig::EnableDistModel)
      .def("carrier_id", &DistConfig::carrier_id)
      .def("current_endpoint", &DistConfig::current_endpoint)
      .def("trainer_endpoints", &DistConfig::trainer_endpoints)
      .def("nranks", &DistConfig::nranks)
      .def("rank", &DistConfig::rank)
      .def("comm_init_config", &DistConfig::comm_init_config)
      .def("use_dist_model", &DistConfig::use_dist_model);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
}

void BindLiteNNAdapterConfig(py::module *m) {
  py::class_<LiteNNAdapterConfig> lite_nnadapter_config(*m,
                                                        "LiteNNAdapterConfig");

  lite_nnadapter_config
      .def("set_device_names", &LiteNNAdapterConfig::SetDeviceNames)
      .def("set_context_properties", &LiteNNAdapterConfig::SetContextProperties)
      .def("set_model_cache_dir", &LiteNNAdapterConfig::SetModelCacheDir)
      .def("set_model_cache_buffers",
           &LiteNNAdapterConfig::SetModelCacheBuffers)
      .def("set_subgraph_partition_config_path",
           &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath)
      .def("set_subgraph_partition_config_buffer",
           &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer)
      .def("enable", &LiteNNAdapterConfig::Enable)
      .def("disable", &LiteNNAdapterConfig::Disable);
F
flame 已提交
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifdef PADDLE_WITH_MKLDNN
void BindMkldnnQuantizerConfig(py::module *m) {
  py::class_<MkldnnQuantizerConfig> quantizer_config(*m,
                                                     "MkldnnQuantizerConfig");
  quantizer_config.def(py::init<const MkldnnQuantizerConfig &>())
      .def(py::init<>())
      .def("set_quant_data",
           [](MkldnnQuantizerConfig &self,
              const std::vector<PaddleTensor> &data) {
             auto warmup_data =
                 std::make_shared<std::vector<PaddleTensor>>(data);
             self.SetWarmupData(warmup_data);
             return;
           })
      .def("set_quant_batch_size", &MkldnnQuantizerConfig::SetWarmupBatchSize)
1018
      .def("set_enabled_op_types", &MkldnnQuantizerConfig::SetEnabledOpTypes);
1019 1020 1021
}
#endif

F
flame 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
void BindAnalysisPredictor(py::module *m) {
  py::class_<AnalysisPredictor, PaddlePredictor>(*m, "AnalysisPredictor")
      .def(py::init<const AnalysisConfig &>())
      .def("init", &AnalysisPredictor::Init)
      .def(
          "run",
          [](AnalysisPredictor &self, const std::vector<PaddleTensor> &inputs) {
            std::vector<PaddleTensor> outputs;
            self.Run(inputs, &outputs);
            return outputs;
          })
      .def("get_input_tensor", &AnalysisPredictor::GetInputTensor)
      .def("get_output_tensor", &AnalysisPredictor::GetOutputTensor)
1035 1036 1037
      .def("get_input_names", &AnalysisPredictor::GetInputNames)
      .def("get_output_names", &AnalysisPredictor::GetOutputNames)
      .def("get_input_tensor_shape", &AnalysisPredictor::GetInputTensorShape)
F
flame 已提交
1038
      .def("zero_copy_run", &AnalysisPredictor::ZeroCopyRun)
1039 1040
      .def("clear_intermediate_tensor",
           &AnalysisPredictor::ClearIntermediateTensor)
1041
      .def("try_shrink_memory", &AnalysisPredictor::TryShrinkMemory)
1042 1043 1044 1045 1046
      .def("create_feed_fetch_var", &AnalysisPredictor::CreateFeedFetchVar)
      .def("prepare_feed_fetch", &AnalysisPredictor::PrepareFeedFetch)
      .def("prepare_argument", &AnalysisPredictor::PrepareArgument)
      .def("optimize_inference_program",
           &AnalysisPredictor::OptimizeInferenceProgram)
W
Wilber 已提交
1047 1048
      .def("analysis_argument",
           &AnalysisPredictor::analysis_argument,
1049
           py::return_value_policy::reference)
1050
      .def("clone", [](AnalysisPredictor &self) { return self.Clone(nullptr); })
1051 1052 1053
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](AnalysisPredictor &self, phi::CUDAStream &stream) {
1054
             return self.Clone(stream.raw_stream());
1055 1056
           })
#endif
W
Wilber 已提交
1057 1058
      .def("scope",
           &AnalysisPredictor::scope,
1059
           py::return_value_policy::reference)
W
Wilber 已提交
1060 1061
      .def("program",
           &AnalysisPredictor::program,
1062 1063 1064
           py::return_value_policy::reference)
      .def("get_serialized_program", &AnalysisPredictor::GetSerializedProgram)
      .def("mkldnn_quantize", &AnalysisPredictor::MkldnnQuantize)
W
Wilber 已提交
1065 1066
      .def(
          "SaveOptimModel", &AnalysisPredictor::SaveOptimModel, py::arg("dir"));
F
flame 已提交
1067
}
1068

W
Wilber 已提交
1069 1070 1071 1072 1073 1074 1075
void BindPaddleInferPredictor(py::module *m) {
  py::class_<paddle_infer::Predictor>(*m, "PaddleInferPredictor")
      .def(py::init<const paddle_infer::Config &>())
      .def("get_input_names", &paddle_infer::Predictor::GetInputNames)
      .def("get_output_names", &paddle_infer::Predictor::GetOutputNames)
      .def("get_input_handle", &paddle_infer::Predictor::GetInputHandle)
      .def("get_output_handle", &paddle_infer::Predictor::GetOutputHandle)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
      .def(
          "run",
          [](paddle_infer::Predictor &self, py::handle py_in_tensor_list) {
            auto in_tensor_list =
                CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
            std::vector<paddle::Tensor> outputs;
            self.Run(in_tensor_list, &outputs);
            return py::handle(ToPyObject(outputs));
          },
          py::arg("inputs"))
1086
      .def("run", [](paddle_infer::Predictor &self) { self.Run(); })
1087 1088
      .def("clone",
           [](paddle_infer::Predictor &self) { return self.Clone(nullptr); })
1089 1090 1091
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](paddle_infer::Predictor &self, phi::CUDAStream &stream) {
1092
             return self.Clone(stream.raw_stream());
1093 1094
           })
#endif
1095
      .def("try_shrink_memory", &paddle_infer::Predictor::TryShrinkMemory)
W
Wilber 已提交
1096
      .def("clear_intermediate_tensor",
1097 1098
           &paddle_infer::Predictor::ClearIntermediateTensor)
      .def("register_output_hook",
1099 1100 1101 1102 1103
           py::overload_cast<const paddle_infer::OutputTensorHookFunc &>(
               &paddle_infer::Predictor::RegisterOutputHook))
      .def("register_output_hook_v2",
           py::overload_cast<const paddle_infer::OutputTensorHookFunc_V2 &>(
               &paddle_infer::Predictor::RegisterOutputHook));
W
Wilber 已提交
1104 1105
}

1106 1107
void BindZeroCopyTensor(py::module *m) {
  py::class_<ZeroCopyTensor>(*m, "ZeroCopyTensor")
W
Wilber 已提交
1108 1109 1110 1111 1112 1113
      .def(
          "reshape",
          py::overload_cast<const std::vector<int> &>(&ZeroCopyTensor::Reshape))
      .def("reshape",
           py::overload_cast<const std::size_t &>(
               &paddle_infer::Tensor::ReshapeStrings))
1114 1115
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int8_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<uint8_t>)
1116 1117 1118
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int32_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int64_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<float>)
1119
      .def("copy_from_cpu", &ZeroCopyTensorCreate<phi::dtype::float16>)
Y
Yuanle Liu 已提交
1120 1121
      // NOTE(liuyuanle): double must be bound after float.
      .def("copy_from_cpu", &ZeroCopyTensorCreate<double>)
1122
      .def("copy_from_cpu", &ZeroCopyTensorCreate<bool>)
S
Steffy-zxf 已提交
1123
      .def("copy_from_cpu", &ZeroCopyStringTensorCreate)
1124 1125 1126 1127 1128 1129 1130
      .def("copy_to_cpu", &ZeroCopyTensorToNumpy)
      .def("shape", &ZeroCopyTensor::shape)
      .def("set_lod", &ZeroCopyTensor::SetLoD)
      .def("lod", &ZeroCopyTensor::lod)
      .def("type", &ZeroCopyTensor::type);
}

W
Wilber 已提交
1131 1132
void BindPaddleInferTensor(py::module *m) {
  py::class_<paddle_infer::Tensor>(*m, "PaddleInferTensor")
W
Wilber 已提交
1133 1134 1135 1136 1137 1138
      .def("reshape",
           py::overload_cast<const std::vector<int> &>(
               &paddle_infer::Tensor::Reshape))
      .def("reshape",
           py::overload_cast<const std::size_t &>(
               &paddle_infer::Tensor::ReshapeStrings))
1139 1140 1141 1142 1143
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<int8_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<uint8_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<int32_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<int64_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<float>)
1144
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<phi::dtype::float16>)
Y
Yuanle Liu 已提交
1145 1146
      // NOTE(liuyuanle): double must be bound after float.
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<double>)
1147 1148 1149 1150 1151 1152 1153 1154 1155
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<bool>)
      .def("_copy_from_cpu_bind", &PaddleInferStringTensorCreate)
      .def("_share_external_data_bind", &PaddleInferShareExternalData)
      .def("_share_external_data_paddle_tensor_bind",
           [](paddle_infer::Tensor &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             PaddleTensorShareExternalData(self,
                                           std::move(CastPyArg2Tensor(obj, 0)));
           })
W
Wilber 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
      .def("copy_to_cpu", &PaddleInferTensorToNumpy)
      .def("shape", &paddle_infer::Tensor::shape)
      .def("set_lod", &paddle_infer::Tensor::SetLoD)
      .def("lod", &paddle_infer::Tensor::lod)
      .def("type", &paddle_infer::Tensor::type);
}

void BindPredictorPool(py::module *m) {
  py::class_<paddle_infer::services::PredictorPool>(*m, "PredictorPool")
      .def(py::init<const paddle_infer::Config &, size_t>())
W
Wilber 已提交
1166 1167
      .def("retrive",
           &paddle_infer::services::PredictorPool::Retrive,
W
Wilber 已提交
1168 1169 1170
           py::return_value_policy::reference);
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
void BindPaddlePassBuilder(py::module *m) {
  py::class_<PaddlePassBuilder>(*m, "PaddlePassBuilder")
      .def(py::init<const std::vector<std::string> &>())
      .def("set_passes",
           [](PaddlePassBuilder &self, const std::vector<std::string> &passes) {
             self.ClearPasses();
             for (auto pass : passes) {
               self.AppendPass(std::move(pass));
             }
           })
      .def("append_pass", &PaddlePassBuilder::AppendPass)
      .def("insert_pass", &PaddlePassBuilder::InsertPass)
      .def("delete_pass",
           [](PaddlePassBuilder &self, const std::string &pass_type) {
             self.DeletePass(pass_type);
           })
      .def("append_analysis_pass", &PaddlePassBuilder::AppendAnalysisPass)
      .def("turn_on_debug", &PaddlePassBuilder::TurnOnDebug)
      .def("debug_string", &PaddlePassBuilder::DebugString)
W
Wilber 已提交
1190 1191
      .def("all_passes",
           &PaddlePassBuilder::AllPasses,
1192 1193 1194 1195 1196 1197 1198 1199
           py::return_value_policy::reference)
      .def("analysis_passes", &PaddlePassBuilder::AnalysisPasses);

  py::class_<PassStrategy, PaddlePassBuilder>(*m, "PassStrategy")
      .def(py::init<const std::vector<std::string> &>())
      .def("enable_cudnn", &PassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &PassStrategy::EnableMKLDNN)
      .def("enable_mkldnn_quantizer", &PassStrategy::EnableMkldnnQuantizer)
1200
      .def("enable_mkldnn_bfloat16", &PassStrategy::EnableMkldnnBfloat16)
1201 1202 1203 1204 1205 1206 1207
      .def("use_gpu", &PassStrategy::use_gpu);

  py::class_<CpuPassStrategy, PassStrategy>(*m, "CpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const CpuPassStrategy &>())
      .def("enable_cudnn", &CpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &CpuPassStrategy::EnableMKLDNN)
1208 1209
      .def("enable_mkldnn_quantizer", &CpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &CpuPassStrategy::EnableMkldnnBfloat16);
1210 1211 1212 1213 1214 1215

  py::class_<GpuPassStrategy, PassStrategy>(*m, "GpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const GpuPassStrategy &>())
      .def("enable_cudnn", &GpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &GpuPassStrategy::EnableMKLDNN)
1216 1217
      .def("enable_mkldnn_quantizer", &GpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &GpuPassStrategy::EnableMkldnnBfloat16);
1218
}
1219
}  // namespace
F
flame 已提交
1220 1221
}  // namespace pybind
}  // namespace paddle