inference_api.cc 28.5 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/inference_api.h"
16
#include <pybind11/numpy.h>
F
flame 已提交
17 18
#include <pybind11/stl.h>
#include <cstring>
19
#include <functional>
F
flame 已提交
20
#include <iostream>
21
#include <iterator>
22
#include <map>
23
#include <memory>
F
flame 已提交
24
#include <string>
25
#include <type_traits>
26
#include <unordered_set>
27
#include <utility>
F
flame 已提交
28 29
#include <vector>
#include "paddle/fluid/inference/api/analysis_predictor.h"
30
#include "paddle/fluid/inference/api/helper.h"
F
flame 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
33
#include "paddle/fluid/inference/utils/io_utils.h"
F
flame 已提交
34 35 36 37 38

namespace py = pybind11;

namespace paddle {
namespace pybind {
39 40 41
using paddle::AnalysisPredictor;
using paddle::NativeConfig;
using paddle::NativePaddlePredictor;
F
flame 已提交
42
using paddle::PaddleBuf;
43 44
using paddle::PaddleDType;
using paddle::PaddlePassBuilder;
F
flame 已提交
45 46
using paddle::PaddlePlace;
using paddle::PaddlePredictor;
47 48 49
using paddle::PaddleTensor;
using paddle::PassStrategy;
using paddle::ZeroCopyTensor;
F
flame 已提交
50

51 52 53 54 55 56 57 58 59 60
namespace {
void BindPaddleDType(py::module *m);
void BindPaddleBuf(py::module *m);
void BindPaddleTensor(py::module *m);
void BindPaddlePlace(py::module *m);
void BindPaddlePredictor(py::module *m);
void BindNativeConfig(py::module *m);
void BindNativePredictor(py::module *m);
void BindAnalysisConfig(py::module *m);
void BindAnalysisPredictor(py::module *m);
61 62
void BindZeroCopyTensor(py::module *m);
void BindPaddlePassBuilder(py::module *m);
W
Wilber 已提交
63 64 65
void BindPaddleInferPredictor(py::module *m);
void BindPaddleInferTensor(py::module *m);
void BindPredictorPool(py::module *m);
F
flame 已提交
66

67
#ifdef PADDLE_WITH_MKLDNN
68
void BindMkldnnQuantizerConfig(py::module *m);
69
#endif
70 71

template <typename T>
72 73
PaddleBuf PaddleBufCreate(
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
74
  PaddleBuf buf(data.size() * sizeof(T));
75
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
76 77 78 79 80
              static_cast<T *>(buf.data()));
  return buf;
}

template <typename T>
81 82 83
void PaddleBufReset(
    PaddleBuf &buf,                                                    // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {  // NOLINT
84
  buf.Resize(data.size() * sizeof(T));
85
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
86 87 88 89 90
              static_cast<T *>(buf.data()));
}

template <typename T>
PaddleTensor PaddleTensorCreate(
91 92
    py::array_t<T, py::array::c_style | py::array::forcecast> data,
    const std::string name = "",
93 94 95 96 97
    const std::vector<std::vector<size_t>> &lod = {}, bool copy = true) {
  PaddleTensor tensor;

  if (copy) {
    PaddleBuf buf(data.size() * sizeof(T));
98
    std::copy_n(static_cast<const T *>(data.data()), data.size(),
99 100 101 102 103 104
                static_cast<T *>(buf.data()));
    tensor.data = std::move(buf);
  } else {
    tensor.data = PaddleBuf(data.mutable_data(), data.size() * sizeof(T));
  }

105
  tensor.dtype = inference::PaddleTensorGetDType<T>();
106 107 108 109 110 111 112 113
  tensor.name = name;
  tensor.lod = lod;
  tensor.shape.resize(data.ndim());
  std::copy_n(data.shape(), data.ndim(), tensor.shape.begin());

  return tensor;
}

114
py::dtype PaddleDTypeToNumpyDType(PaddleDType dtype) {
115
  py::dtype dt;
116
  switch (dtype) {
117 118 119 120 121 122 123 124 125
    case PaddleDType::INT32:
      dt = py::dtype::of<int32_t>();
      break;
    case PaddleDType::INT64:
      dt = py::dtype::of<int64_t>();
      break;
    case PaddleDType::FLOAT32:
      dt = py::dtype::of<float>();
      break;
W
Wilber 已提交
126 127 128
    case PaddleDType::UINT8:
      dt = py::dtype::of<uint8_t>();
      break;
129
    default:
130
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
131
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
132
          "FLOAT32."));
133
  }
134 135 136 137 138 139 140 141 142 143

  return dt;
}

py::array PaddleTensorGetData(PaddleTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.dtype);
  return py::array(std::move(dt), {tensor.shape}, tensor.data.data());
}

template <typename T>
144 145 146
void ZeroCopyTensorCreate(
    ZeroCopyTensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
147 148 149 150 151 152
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.copy_from_cpu(static_cast<const T *>(data.data()));
}

W
Wilber 已提交
153
template <typename T>
154 155 156
void PaddleInferTensorCreate(
    paddle_infer::Tensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
W
Wilber 已提交
157 158 159 160 161 162
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.CopyFromCpu(static_cast<const T *>(data.data()));
}

163 164 165 166 167 168 169 170 171 172 173 174 175
size_t PaddleGetDTypeSize(PaddleDType dt) {
  size_t size{0};
  switch (dt) {
    case PaddleDType::INT32:
      size = sizeof(int32_t);
      break;
    case PaddleDType::INT64:
      size = sizeof(int64_t);
      break;
    case PaddleDType::FLOAT32:
      size = sizeof(float);
      break;
    default:
176 177 178
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  }
  return size;
}

py::array ZeroCopyTensorToNumpy(ZeroCopyTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.copy_to_cpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.copy_to_cpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.copy_to_cpu<float>(static_cast<float *>(array.mutable_data()));
      break;
W
Wilber 已提交
199 200 201
    case PaddleDType::UINT8:
      tensor.copy_to_cpu<uint8_t>(static_cast<uint8_t *>(array.mutable_data()));
      break;
202 203 204
    case PaddleDType::INT8:
      tensor.copy_to_cpu<int8_t>(static_cast<int8_t *>(array.mutable_data()));
      break;
205
    default:
206
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
207
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
208
          "FLOAT32."));
209 210
  }
  return array;
211
}
212

W
Wilber 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
py::array PaddleInferTensorToNumpy(paddle_infer::Tensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.CopyToCpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.CopyToCpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.CopyToCpu<float>(static_cast<float *>(array.mutable_data()));
      break;
229 230 231 232 233 234
    case PaddleDType::UINT8:
      tensor.CopyToCpu(static_cast<uint8_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT8:
      tensor.CopyToCpu(static_cast<int8_t *>(array.mutable_data()));
      break;
W
Wilber 已提交
235 236 237 238 239 240 241 242
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
  }
  return array;
}

243 244 245 246 247
py::bytes SerializePDTensorToBytes(PaddleTensor &tensor) {  // NOLINT
  std::stringstream ss;
  paddle::inference::SerializePDTensorToStream(&ss, tensor);
  return static_cast<py::bytes>(ss.str());
}
248
}  // namespace
249

F
flame 已提交
250 251 252 253 254 255 256 257 258 259
void BindInferenceApi(py::module *m) {
  BindPaddleDType(m);
  BindPaddleBuf(m);
  BindPaddleTensor(m);
  BindPaddlePlace(m);
  BindPaddlePredictor(m);
  BindNativeConfig(m);
  BindNativePredictor(m);
  BindAnalysisConfig(m);
  BindAnalysisPredictor(m);
W
Wilber 已提交
260
  BindPaddleInferPredictor(m);
261
  BindZeroCopyTensor(m);
W
Wilber 已提交
262
  BindPaddleInferTensor(m);
263
  BindPaddlePassBuilder(m);
W
Wilber 已提交
264
  BindPredictorPool(m);
265 266 267
#ifdef PADDLE_WITH_MKLDNN
  BindMkldnnQuantizerConfig(m);
#endif
F
flame 已提交
268
  m->def("create_paddle_predictor",
W
Wilber 已提交
269
         &paddle::CreatePaddlePredictor<AnalysisConfig>, py::arg("config"));
F
flame 已提交
270
  m->def("create_paddle_predictor",
W
Wilber 已提交
271
         &paddle::CreatePaddlePredictor<NativeConfig>, py::arg("config"));
W
Wilber 已提交
272 273 274 275 276 277 278
  m->def("create_predictor", [](const paddle_infer::Config &config)
                                 -> std::unique_ptr<paddle_infer::Predictor> {
                                   auto pred =
                                       std::unique_ptr<paddle_infer::Predictor>(
                                           new paddle_infer::Predictor(config));
                                   return std::move(pred);
                                 });
F
flame 已提交
279
  m->def("paddle_dtype_size", &paddle::PaddleDtypeSize);
280
  m->def("paddle_tensor_to_bytes", &SerializePDTensorToBytes);
W
Wilber 已提交
281 282
  m->def("get_version", &paddle_infer::GetVersion);
  m->def("get_num_bytes_of_data_type", &paddle_infer::GetNumBytesOfDataType);
F
flame 已提交
283 284
}

285
namespace {
F
flame 已提交
286 287 288
void BindPaddleDType(py::module *m) {
  py::enum_<PaddleDType>(*m, "PaddleDType")
      .value("FLOAT32", PaddleDType::FLOAT32)
289 290
      .value("INT64", PaddleDType::INT64)
      .value("INT32", PaddleDType::INT32);
F
flame 已提交
291 292 293 294 295 296 297 298
}

void BindPaddleBuf(py::module *m) {
  py::class_<PaddleBuf>(*m, "PaddleBuf")
      .def(py::init<size_t>())
      .def(py::init([](std::vector<float> &data) {
        auto buf = PaddleBuf(data.size() * sizeof(float));
        std::memcpy(buf.data(), static_cast<void *>(data.data()), buf.length());
G
Gabor Buella 已提交
299
        return buf;
F
flame 已提交
300
      }))
301 302 303
      .def(py::init(&PaddleBufCreate<int32_t>))
      .def(py::init(&PaddleBufCreate<int64_t>))
      .def(py::init(&PaddleBufCreate<float>))
F
flame 已提交
304 305 306 307 308 309
      .def("resize", &PaddleBuf::Resize)
      .def("reset",
           [](PaddleBuf &self, std::vector<float> &data) {
             self.Resize(data.size() * sizeof(float));
             std::memcpy(self.data(), data.data(), self.length());
           })
310 311 312
      .def("reset", &PaddleBufReset<int32_t>)
      .def("reset", &PaddleBufReset<int64_t>)
      .def("reset", &PaddleBufReset<float>)
313
      .def("empty", &PaddleBuf::empty)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
      .def("tolist",
           [](PaddleBuf &self, const std::string &dtype) -> py::list {
             py::list l;
             if (dtype == "int32") {
               auto *data = static_cast<int32_t *>(self.data());
               auto size = self.length() / sizeof(int32_t);
               l = py::cast(std::vector<int32_t>(data, data + size));
             } else if (dtype == "int64") {
               auto *data = static_cast<int64_t *>(self.data());
               auto size = self.length() / sizeof(int64_t);
               l = py::cast(std::vector<int64_t>(data, data + size));
             } else if (dtype == "float32") {
               auto *data = static_cast<float *>(self.data());
               auto size = self.length() / sizeof(float);
               l = py::cast(std::vector<float>(data, data + size));
             } else {
330 331 332
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Unsupported data type. Now only supports INT32, INT64 and "
                   "FLOAT32."));
333 334 335
             }
             return l;
           })
F
flame 已提交
336 337 338 339 340 341 342 343 344 345
      .def("float_data",
           [](PaddleBuf &self) -> std::vector<float> {
             auto *data = static_cast<float *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
      .def("int64_data",
           [](PaddleBuf &self) -> std::vector<int64_t> {
             int64_t *data = static_cast<int64_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
346 347 348 349
      .def("int32_data",
           [](PaddleBuf &self) -> std::vector<int32_t> {
             int32_t *data = static_cast<int32_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
F
flame 已提交
350 351 352 353 354 355 356
           })
      .def("length", &PaddleBuf::length);
}

void BindPaddleTensor(py::module *m) {
  py::class_<PaddleTensor>(*m, "PaddleTensor")
      .def(py::init<>())
357 358 359 360 361 362 363 364 365 366 367 368 369
      .def(py::init(&PaddleTensorCreate<int32_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<int64_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<float>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def("as_ndarray", &PaddleTensorGetData)
F
flame 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
      .def_readwrite("name", &PaddleTensor::name)
      .def_readwrite("shape", &PaddleTensor::shape)
      .def_readwrite("data", &PaddleTensor::data)
      .def_readwrite("dtype", &PaddleTensor::dtype)
      .def_readwrite("lod", &PaddleTensor::lod);
}

void BindPaddlePlace(py::module *m) {
  py::enum_<PaddlePlace>(*m, "PaddlePlace")
      .value("UNK", PaddlePlace::kUNK)
      .value("CPU", PaddlePlace::kCPU)
      .value("GPU", PaddlePlace::kGPU);
}

void BindPaddlePredictor(py::module *m) {
  auto paddle_predictor = py::class_<PaddlePredictor>(*m, "PaddlePredictor");
  paddle_predictor
      .def("run",
           [](PaddlePredictor &self, const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &PaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &PaddlePredictor::GetOutputTensor)
395 396
      .def("get_input_names", &PaddlePredictor::GetInputNames)
      .def("get_output_names", &PaddlePredictor::GetOutputNames)
F
flame 已提交
397
      .def("zero_copy_run", &PaddlePredictor::ZeroCopyRun)
398 399
      .def("clone", &PaddlePredictor::Clone)
      .def("get_serialized_program", &PaddlePredictor::GetSerializedProgram);
F
flame 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

  auto config = py::class_<PaddlePredictor::Config>(paddle_predictor, "Config");
  config.def(py::init<>())
      .def_readwrite("model_dir", &PaddlePredictor::Config::model_dir);
}

void BindNativeConfig(py::module *m) {
  py::class_<NativeConfig, PaddlePredictor::Config>(*m, "NativeConfig")
      .def(py::init<>())
      .def_readwrite("use_gpu", &NativeConfig::use_gpu)
      .def_readwrite("device", &NativeConfig::device)
      .def_readwrite("fraction_of_gpu_memory",
                     &NativeConfig::fraction_of_gpu_memory)
      .def_readwrite("prog_file", &NativeConfig::prog_file)
      .def_readwrite("param_file", &NativeConfig::param_file)
      .def_readwrite("specify_input_name", &NativeConfig::specify_input_name)
      .def("set_cpu_math_library_num_threads",
           &NativeConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &NativeConfig::cpu_math_library_num_threads);
}

void BindNativePredictor(py::module *m) {
  py::class_<NativePaddlePredictor, PaddlePredictor>(*m,
                                                     "NativePaddlePredictor")
      .def(py::init<const NativeConfig &>())
      .def("init", &NativePaddlePredictor::Init)
      .def("run",
           [](NativePaddlePredictor &self,
              const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &NativePaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &NativePaddlePredictor::GetOutputTensor)
      .def("zero_copy_run", &NativePaddlePredictor::ZeroCopyRun)
      .def("clone", &NativePaddlePredictor::Clone)
      .def("scope", &NativePaddlePredictor::scope,
           py::return_value_policy::reference);
}

void BindAnalysisConfig(py::module *m) {
443 444 445 446 447
  py::class_<AnalysisConfig> analysis_config(*m, "AnalysisConfig");

  py::enum_<AnalysisConfig::Precision>(analysis_config, "Precision")
      .value("Float32", AnalysisConfig::Precision::kFloat32)
      .value("Int8", AnalysisConfig::Precision::kInt8)
Z
Zhaolong Xing 已提交
448
      .value("Half", AnalysisConfig::Precision::kHalf)
449 450
      .export_values();

451 452
  analysis_config.def(py::init<>())
      .def(py::init<const AnalysisConfig &>())
F
flame 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466
      .def(py::init<const std::string &>())
      .def(py::init<const std::string &, const std::string &>())
      .def("set_model", (void (AnalysisConfig::*)(const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_model", (void (AnalysisConfig::*)(const std::string &,
                                                  const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_prog_file", &AnalysisConfig::SetProgFile)
      .def("set_params_file", &AnalysisConfig::SetParamsFile)
      .def("model_dir", &AnalysisConfig::model_dir)
      .def("prog_file", &AnalysisConfig::prog_file)
      .def("params_file", &AnalysisConfig::params_file)
      .def("enable_use_gpu", &AnalysisConfig::EnableUseGpu,
           py::arg("memory_pool_init_size_mb"), py::arg("device_id") = 0)
467 468
      .def("enable_xpu", &AnalysisConfig::EnableXpu,
           py::arg("l3_workspace_size"))
F
flame 已提交
469 470 471 472 473 474 475 476 477 478
      .def("disable_gpu", &AnalysisConfig::DisableGpu)
      .def("use_gpu", &AnalysisConfig::use_gpu)
      .def("gpu_device_id", &AnalysisConfig::gpu_device_id)
      .def("memory_pool_init_size_mb",
           &AnalysisConfig::memory_pool_init_size_mb)
      .def("fraction_of_gpu_memory_for_pool",
           &AnalysisConfig::fraction_of_gpu_memory_for_pool)
      .def("switch_ir_optim", &AnalysisConfig::SwitchIrOptim,
           py::arg("x") = true)
      .def("ir_optim", &AnalysisConfig::ir_optim)
479
      .def("enable_memory_optim", &AnalysisConfig::EnableMemoryOptim)
480
      .def("enable_profile", &AnalysisConfig::EnableProfile)
481
      .def("disable_glog_info", &AnalysisConfig::DisableGlogInfo)
482
      .def("glog_info_disabled", &AnalysisConfig::glog_info_disabled)
483
      .def("set_optim_cache_dir", &AnalysisConfig::SetOptimCacheDir)
F
flame 已提交
484 485 486 487 488 489 490 491 492
      .def("switch_use_feed_fetch_ops", &AnalysisConfig::SwitchUseFeedFetchOps,
           py::arg("x") = true)
      .def("use_feed_fetch_ops_enabled",
           &AnalysisConfig::use_feed_fetch_ops_enabled)
      .def("switch_specify_input_names",
           &AnalysisConfig::SwitchSpecifyInputNames, py::arg("x") = true)
      .def("specify_input_name", &AnalysisConfig::specify_input_name)
      .def("enable_tensorrt_engine", &AnalysisConfig::EnableTensorRtEngine,
           py::arg("workspace_size") = 1 << 20, py::arg("max_batch_size") = 1,
493
           py::arg("min_subgraph_size") = 3,
N
nhzlx 已提交
494
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
495 496 497
           py::arg("use_static") = false, py::arg("use_calib_mode") = true)
      .def("set_trt_dynamic_shape_info",
           &AnalysisConfig::SetTRTDynamicShapeInfo,
498 499 500 501 502
           py::arg("min_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("max_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("optim_input_shape") =
503 504
               std::map<std::string, std::vector<int>>({}),
           py::arg("disable_trt_plugin_fp16") = false)
505 506
      .def("enable_tensorrt_oss", &AnalysisConfig::EnableTensorRtOSS)
      .def("tensorrt_oss_enabled", &AnalysisConfig::tensorrt_oss_enabled)
507 508 509
      .def("enable_tensorrt_dla", &AnalysisConfig::EnableTensorRtDLA,
           py::arg("dla_core") = 0)
      .def("tensorrt_dla_enabled", &AnalysisConfig::tensorrt_dla_enabled)
F
flame 已提交
510
      .def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled)
511 512
      .def("enable_lite_engine", &AnalysisConfig::EnableLiteEngine,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
513
           py::arg("zero_copy") = false,
514 515 516
           py::arg("passes_filter") = std::vector<std::string>(),
           py::arg("ops_filter") = std::vector<std::string>())
      .def("lite_engine_enabled", &AnalysisConfig::lite_engine_enabled)
F
flame 已提交
517 518 519 520 521 522 523 524 525
      .def("switch_ir_debug", &AnalysisConfig::SwitchIrDebug,
           py::arg("x") = true)
      .def("enable_mkldnn", &AnalysisConfig::EnableMKLDNN)
      .def("mkldnn_enabled", &AnalysisConfig::mkldnn_enabled)
      .def("set_cpu_math_library_num_threads",
           &AnalysisConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &AnalysisConfig::cpu_math_library_num_threads)
      .def("to_native_config", &AnalysisConfig::ToNativeConfig)
526
      .def("enable_quantizer", &AnalysisConfig::EnableMkldnnQuantizer)
527
      .def("enable_mkldnn_bfloat16", &AnalysisConfig::EnableMkldnnBfloat16)
528 529 530
#ifdef PADDLE_WITH_MKLDNN
      .def("quantizer_config", &AnalysisConfig::mkldnn_quantizer_config,
           py::return_value_policy::reference)
531 532
      .def("set_mkldnn_cache_capacity", &AnalysisConfig::SetMkldnnCacheCapacity,
           py::arg("capacity") = 0)
533
      .def("set_bfloat16_op", &AnalysisConfig::SetBfloat16Op)
534
#endif
F
flame 已提交
535 536 537
      .def("set_mkldnn_op", &AnalysisConfig::SetMKLDNNOp)
      .def("set_model_buffer", &AnalysisConfig::SetModelBuffer)
      .def("model_from_memory", &AnalysisConfig::model_from_memory)
538 539 540 541
      .def("delete_pass",
           [](AnalysisConfig &self, const std::string &pass) {
             self.pass_builder()->DeletePass(pass);
           })
F
flame 已提交
542 543 544 545
      .def("pass_builder", &AnalysisConfig::pass_builder,
           py::return_value_policy::reference);
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
#ifdef PADDLE_WITH_MKLDNN
void BindMkldnnQuantizerConfig(py::module *m) {
  py::class_<MkldnnQuantizerConfig> quantizer_config(*m,
                                                     "MkldnnQuantizerConfig");
  quantizer_config.def(py::init<const MkldnnQuantizerConfig &>())
      .def(py::init<>())
      .def("set_quant_data",
           [](MkldnnQuantizerConfig &self,
              const std::vector<PaddleTensor> &data) {
             auto warmup_data =
                 std::make_shared<std::vector<PaddleTensor>>(data);
             self.SetWarmupData(warmup_data);
             return;
           })
      .def("set_quant_batch_size", &MkldnnQuantizerConfig::SetWarmupBatchSize)
      .def(
          "set_enabled_op_types",
          (void (MkldnnQuantizerConfig::*)(std::unordered_set<std::string> &)) &
              MkldnnQuantizerConfig::SetEnabledOpTypes);
}
#endif

F
flame 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580
void BindAnalysisPredictor(py::module *m) {
  py::class_<AnalysisPredictor, PaddlePredictor>(*m, "AnalysisPredictor")
      .def(py::init<const AnalysisConfig &>())
      .def("init", &AnalysisPredictor::Init)
      .def(
          "run",
          [](AnalysisPredictor &self, const std::vector<PaddleTensor> &inputs) {
            std::vector<PaddleTensor> outputs;
            self.Run(inputs, &outputs);
            return outputs;
          })
      .def("get_input_tensor", &AnalysisPredictor::GetInputTensor)
      .def("get_output_tensor", &AnalysisPredictor::GetOutputTensor)
581 582 583
      .def("get_input_names", &AnalysisPredictor::GetInputNames)
      .def("get_output_names", &AnalysisPredictor::GetOutputNames)
      .def("get_input_tensor_shape", &AnalysisPredictor::GetInputTensorShape)
F
flame 已提交
584
      .def("zero_copy_run", &AnalysisPredictor::ZeroCopyRun)
585 586
      .def("clear_intermediate_tensor",
           &AnalysisPredictor::ClearIntermediateTensor)
587
      .def("try_shrink_memory", &AnalysisPredictor::TryShrinkMemory)
588 589 590 591 592 593 594
      .def("create_feed_fetch_var", &AnalysisPredictor::CreateFeedFetchVar)
      .def("prepare_feed_fetch", &AnalysisPredictor::PrepareFeedFetch)
      .def("prepare_argument", &AnalysisPredictor::PrepareArgument)
      .def("optimize_inference_program",
           &AnalysisPredictor::OptimizeInferenceProgram)
      .def("analysis_argument", &AnalysisPredictor::analysis_argument,
           py::return_value_policy::reference)
F
flame 已提交
595 596
      .def("clone", &AnalysisPredictor::Clone)
      .def("scope", &AnalysisPredictor::scope,
597
           py::return_value_policy::reference)
598 599 600 601
      .def("program", &AnalysisPredictor::program,
           py::return_value_policy::reference)
      .def("get_serialized_program", &AnalysisPredictor::GetSerializedProgram)
      .def("mkldnn_quantize", &AnalysisPredictor::MkldnnQuantize)
602 603
      .def("SaveOptimModel", &AnalysisPredictor::SaveOptimModel,
           py::arg("dir"));
F
flame 已提交
604
}
605

W
Wilber 已提交
606 607 608 609 610 611 612 613 614
void BindPaddleInferPredictor(py::module *m) {
  py::class_<paddle_infer::Predictor>(*m, "PaddleInferPredictor")
      .def(py::init<const paddle_infer::Config &>())
      .def("get_input_names", &paddle_infer::Predictor::GetInputNames)
      .def("get_output_names", &paddle_infer::Predictor::GetOutputNames)
      .def("get_input_handle", &paddle_infer::Predictor::GetInputHandle)
      .def("get_output_handle", &paddle_infer::Predictor::GetOutputHandle)
      .def("run", &paddle_infer::Predictor::Run)
      .def("clone", &paddle_infer::Predictor::Clone)
615
      .def("try_shrink_memory", &paddle_infer::Predictor::TryShrinkMemory)
W
Wilber 已提交
616 617 618 619
      .def("clear_intermediate_tensor",
           &paddle_infer::Predictor::ClearIntermediateTensor);
}

620 621 622 623 624 625 626 627 628 629 630 631 632
void BindZeroCopyTensor(py::module *m) {
  py::class_<ZeroCopyTensor>(*m, "ZeroCopyTensor")
      .def("reshape", &ZeroCopyTensor::Reshape)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int32_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int64_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<float>)
      .def("copy_to_cpu", &ZeroCopyTensorToNumpy)
      .def("shape", &ZeroCopyTensor::shape)
      .def("set_lod", &ZeroCopyTensor::SetLoD)
      .def("lod", &ZeroCopyTensor::lod)
      .def("type", &ZeroCopyTensor::type);
}

W
Wilber 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
void BindPaddleInferTensor(py::module *m) {
  py::class_<paddle_infer::Tensor>(*m, "PaddleInferTensor")
      .def("reshape", &paddle_infer::Tensor::Reshape)
      .def("copy_from_cpu", &PaddleInferTensorCreate<int32_t>)
      .def("copy_from_cpu", &PaddleInferTensorCreate<int64_t>)
      .def("copy_from_cpu", &PaddleInferTensorCreate<float>)
      .def("copy_to_cpu", &PaddleInferTensorToNumpy)
      .def("shape", &paddle_infer::Tensor::shape)
      .def("set_lod", &paddle_infer::Tensor::SetLoD)
      .def("lod", &paddle_infer::Tensor::lod)
      .def("type", &paddle_infer::Tensor::type);
}

void BindPredictorPool(py::module *m) {
  py::class_<paddle_infer::services::PredictorPool>(*m, "PredictorPool")
      .def(py::init<const paddle_infer::Config &, size_t>())
      .def("retrive", &paddle_infer::services::PredictorPool::Retrive,
           py::return_value_policy::reference);
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
void BindPaddlePassBuilder(py::module *m) {
  py::class_<PaddlePassBuilder>(*m, "PaddlePassBuilder")
      .def(py::init<const std::vector<std::string> &>())
      .def("set_passes",
           [](PaddlePassBuilder &self, const std::vector<std::string> &passes) {
             self.ClearPasses();
             for (auto pass : passes) {
               self.AppendPass(std::move(pass));
             }
           })
      .def("append_pass", &PaddlePassBuilder::AppendPass)
      .def("insert_pass", &PaddlePassBuilder::InsertPass)
      .def("delete_pass",
           [](PaddlePassBuilder &self, const std::string &pass_type) {
             self.DeletePass(pass_type);
           })
      .def("append_analysis_pass", &PaddlePassBuilder::AppendAnalysisPass)
      .def("turn_on_debug", &PaddlePassBuilder::TurnOnDebug)
      .def("debug_string", &PaddlePassBuilder::DebugString)
      .def("all_passes", &PaddlePassBuilder::AllPasses,
           py::return_value_policy::reference)
      .def("analysis_passes", &PaddlePassBuilder::AnalysisPasses);

  py::class_<PassStrategy, PaddlePassBuilder>(*m, "PassStrategy")
      .def(py::init<const std::vector<std::string> &>())
      .def("enable_cudnn", &PassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &PassStrategy::EnableMKLDNN)
      .def("enable_mkldnn_quantizer", &PassStrategy::EnableMkldnnQuantizer)
681
      .def("enable_mkldnn_bfloat16", &PassStrategy::EnableMkldnnBfloat16)
682 683 684 685 686 687 688
      .def("use_gpu", &PassStrategy::use_gpu);

  py::class_<CpuPassStrategy, PassStrategy>(*m, "CpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const CpuPassStrategy &>())
      .def("enable_cudnn", &CpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &CpuPassStrategy::EnableMKLDNN)
689 690
      .def("enable_mkldnn_quantizer", &CpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &CpuPassStrategy::EnableMkldnnBfloat16);
691 692 693 694 695 696

  py::class_<GpuPassStrategy, PassStrategy>(*m, "GpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const GpuPassStrategy &>())
      .def("enable_cudnn", &GpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &GpuPassStrategy::EnableMKLDNN)
697 698
      .def("enable_mkldnn_quantizer", &GpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &GpuPassStrategy::EnableMkldnnBfloat16);
699
}
700
}  // namespace
F
flame 已提交
701 702
}  // namespace pybind
}  // namespace paddle