while_op.cc 30.6 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yang Yang(Tony) 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
16
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/controlflow/control_flow_op_helper.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yang Yang(Tony) 已提交
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
25
#include "paddle/fluid/platform/flags.h"
Z
zhupengyang 已提交
26 27 28 29 30 31 32

PADDLE_DEFINE_EXPORTED_bool(
    cache_inference_while_scope,
    false,
    "Cache the scope of the while op to avoid repeated creation of the scope "
    "for each iteration and improve inference performance.");

W
wanghuancoder 已提交
33 34 35 36 37 38 39 40
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
class VarDesc;
}  // namespace framework
}  // namespace paddle

Y
Yang Yang(Tony) 已提交
41 42 43 44 45
namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;

S
sneaxiy 已提交
46 47 48 49 50 51 52 53 54 55 56
namespace {  // NOLINT
static std::string GetSkipEagerDeletionVarsDebugString(
    const std::vector<std::string> &vars) {
  std::string str = "Skip " + std::to_string(vars.size()) +
                    " var(s) in eager deletion mode: ";
  for (auto &var : vars) {
    str.append(var);
    str.push_back(' ');
  }
  return str;
}
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

static void TransferVariablePlace(const framework::Scope *scope,
                                  const std::string &var_name,
                                  const phi::Place &dst_place,
                                  const platform::DeviceContext &dev_ctx) {
  framework::Variable *var = scope->FindVar(var_name);
  if (var == nullptr) {
    VLOG(4) << "[TransferVariablePlace]"
            << "lost in_var: " << var_name;
    return;
  }
  if (var->Type() != framework::proto::VarType::LOD_TENSOR) {
    VLOG(10) << "[TransferVariablePlace]" << var_name << " type changed:"
             << framework::TransToPhiDataType(
                    framework::ToVarType(var->Type()));
    return;
  }
  phi::DenseTensor *t = var->GetMutable<phi::DenseTensor>();
  if (t->place() == dst_place) {
    VLOG(10) << "[TransferVariablePlace]"
             << "no need transfer: " << var_name;
    return;
  }

  phi::DenseTensor *new_t = new phi::DenseTensor;
  framework::TensorCopy(*t, dst_place, new_t);
  dev_ctx.Wait();

  t->set_meta(new_t->meta());
  t->ResetHolder(new_t->Holder());

  VLOG(4) << "[TransferVariablePlace]" << var_name
          << " place: " << new_t->place();
}

92
}  // namespace
Y
Yang Yang(Tony) 已提交
93 94 95

class WhileOp : public framework::OperatorBase {
 public:
96 97
  WhileOp(const std::string &type,
          const framework::VariableNameMap &inputs,
Y
Yang Yang(Tony) 已提交
98 99 100 101
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

102 103 104
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
105 106 107
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)),
                            platform::errors::NotFound(
                                "Input(Condition) of WhileOp is not found."));
108

109
    auto &cond = scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>();
110
    PADDLE_ENFORCE_EQ(
111 112
        cond.numel(),
        1,
113
        platform::errors::InvalidArgument(
114 115 116
            "The numel of Input(Condition) of WhileOp must be 1. But now "
            "the Condition's numel is ",
            cond.numel(),
117
            ".\n"));
Y
Yang Yang(Tony) 已提交
118

119
#ifdef PADDLE_WITH_MKLDNN
120 121
    // Executor on being destroyed clears oneDNN cache and resets
    // registered model data layout. This is unwanted for nested
122 123 124
    // Executors (executors declared inside control ops)
    platform::DontClearMKLDNNCache(dev_place);
#endif
Y
Yu Yang 已提交
125
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
126

127 128 129 130
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

131 132 133 134
    bool is_test = Attr<bool>("is_test");

    std::set<std::string> no_copy_var_names;
    if (!is_test) {
135 136 137 138 139 140 141 142 143 144 145 146 147
      // set all persistable parameters into no_copy_var_names.
      auto *global_block = block;

      while (global_block->ID() != 0)
        global_block = global_block->ParentBlock();
      auto all_vars = global_block->AllVars();
      std::for_each(all_vars.begin(),
                    all_vars.end(),
                    [&no_copy_var_names](framework::VarDesc *var) {
                      if (var->IsParameter())
                        no_copy_var_names.insert(var->Name());
                    });

148 149 150 151 152 153 154 155 156 157 158 159 160
      const std::vector<framework::OpDesc *> &all_ops = block->AllOps();
      for (const framework::OpDesc *op : all_ops) {
        const framework::VariableNameMap &input_var_names = op->Inputs();
        const framework::VariableNameMap &output_var_names = op->Outputs();
        for (auto &ipt : input_var_names) {
          for (const std::string &var_name : ipt.second) {
            if (StrInVaraiableNameMap(var_name, output_var_names)) {
              no_copy_var_names.insert(var_name);
            }
          }
        }
      }
    }
Y
Yang Yang(Tony) 已提交
161 162 163

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();
164 165 166 167 168 169 170 171 172 173 174

    if (step_scopes->size() > 0) {
      platform::DeviceContextPool::Instance().Get(dev_place)->Wait();
      for (auto &s : *step_scopes) {
        if (scope.HasKid(s)) {
          scope.DeleteScope(s);
        }
      }
      step_scopes->clear();
    }

175 176
    PADDLE_ENFORCE_EQ(step_scopes->size(),
                      0,
177 178
                      platform::errors::PreconditionNotMet(
                          "The Output(StepScope) of WhileOp should be empty."));
X
Xin Pan 已提交
179

180
    bool cond_data = GetCondData(cond);
S
sneaxiy 已提交
181
    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
182
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
S
fix bug  
sneaxiy 已提交
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    // note(lvyongkang): The assign op in while loop may change the place of
    // variable. However, InterpreterCore fix the kernel of every ops during its
    // first run. A cpu tensor may become gpu tensor after first run. This will
    // lead to segmetation fault when it's used in a cpu kernel. Here we record
    // the place of every inputs and restore their place after
    // InterpreterCore.run().
    std::map<std::string, phi::Place> input_var_original_places;
    for (const auto &in_name : Inputs(kX)) {
      framework::Variable *var = scope.FindVar(in_name);
      if (var == nullptr) {
        VLOG(4) << "[while op]"
                << "input not found:" << in_name;
      }

      if (var->Type() == framework::proto::VarType::LOD_TENSOR) {
        input_var_original_places[in_name] =
            (var->Get<phi::DenseTensor>()).place();
      } else {
        VLOG(10) << "[while op]"
                 << "skip backup input " << in_name << " type:"
                 << framework::TransToPhiDataType(
                        framework::ToVarType(var->Type()));
      }
    }

209 210 211 212 213 214 215 216 217 218 219 220
    LOG_FIRST_N(INFO, 1) << "[ControlFlow][WhileOp] New Executor is Running.";
    if (!core_ || !platform::is_same_place(core_->GetPlace(), dev_place)) {
      framework::Scope placeholder;  // Don't care if it's valid, just for
                                     // initialize InterpreterCore
      framework::interpreter::ExecutionConfig execution_config;
      execution_config.create_local_scope = false;
      execution_config.used_for_control_flow_op = true;
      execution_config.skip_gc_vars =
          std::set<std::string>(skip_vars.begin(), skip_vars.end());

      core_.reset(new framework::InterpreterCore(
          dev_place, *block, &placeholder, execution_config));
221 222
    }

223
    if (!is_test) {
224
      while (cond_data) {
225 226
        auto &current_scope = scope.NewScope();
        step_scopes->push_back(&current_scope);
227 228 229 230 231 232 233

        std::vector<std::string> rename_vars;
        for (const std::string &input_var_name : Inputs(kX)) {
          if (no_copy_var_names.find(input_var_name) ==
              no_copy_var_names.end()) {
            std::string input_var_rename = input_var_name + kSuffix;
            framework::Variable *input_var = scope.FindVar(input_var_name);
234
            if (input_var->IsType<phi::DenseTensor>()) {
235
              rename_vars.push_back(input_var_rename);
236
              auto input_var_tensor = input_var->Get<phi::DenseTensor>();
237
              auto *rename_input_var_tensor =
238 239
                  current_scope.Var(input_var_rename)
                      ->GetMutable<phi::DenseTensor>();
240 241
              framework::TensorCopy(
                  input_var_tensor, dev_place, rename_input_var_tensor);
242 243 244 245
              rename_input_var_tensor->set_lod(input_var_tensor.lod());
            }
          }
        }
246

247 248 249 250 251 252 253 254 255 256
        BuildScopeForControlFlowOp(*core_, *block, &current_scope);
        core_->reset_scope(&current_scope);
        core_->Run({}, false);

        // restore inputs place
        for (const auto &n : input_var_original_places) {
          const std::string &in_name = n.first;
          const phi::Place &original_place = n.second;
          // input vars exist in `scope` not `current_scope`
          TransferVariablePlace(&scope, in_name, original_place, dev_ctx);
257
        }
258 259 260 261 262 263

        for (auto &var_rename : rename_vars) {
          std::string input_var_name =
              var_rename.substr(0, var_rename.size() - strlen(kSuffix));
          current_scope.Rename(var_rename, input_var_name);
        }
264 265
        cond_data = GetCondData(
            scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>());
266 267
      }
    } else {
Z
zhupengyang 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280
      framework::Scope *current_scope = nullptr;
      if (!FLAGS_cache_inference_while_scope) {
        current_scope = &(scope.NewScope());
        BuildScopeForControlFlowOp(*core_, *block, current_scope);
        core_->reset_scope(current_scope);
      } else {
        if (cached_inference_scope_ == nullptr) {
          cached_inference_scope_ = &(scope.NewScope());
          BuildScopeForControlFlowOp(*core_, *block, cached_inference_scope_);
          core_->reset_scope(cached_inference_scope_);
        }
        current_scope = cached_inference_scope_;
      }
281

282
      while (cond_data) {
Z
zhupengyang 已提交
283 284
        for (auto &name : current_scope->LocalVarNames()) {
          auto *var = current_scope->Var(name);
285
          if (var->IsType<phi::DenseTensor>()) {
286
            // Clear all lod information for all lod_tensors.
287
            auto *t = var->GetMutable<phi::DenseTensor>();
288 289 290 291 292 293 294 295
            framework::LoD empty_lod;
            t->set_lod(empty_lod);
          } else if (var->IsType<framework::LoDTensorArray>()) {
            // Clear elements of all tensor arrays.
            auto *t = var->GetMutable<framework::LoDTensorArray>();
            t->clear();
          }
        }
296

297
        core_->Run({}, false);
298

299 300
        cond_data = GetCondData(
            scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>());
C
chengduo 已提交
301
      }
H
hong 已提交
302

Z
zhupengyang 已提交
303 304 305
      if (!FLAGS_cache_inference_while_scope) {
        scope.DeleteScope(current_scope);
      }
Y
Yang Yang(Tony) 已提交
306 307
    }
  }
308 309 310 311 312

 private:
  mutable std::shared_ptr<framework::Executor> executor_{nullptr};
  mutable std::unique_ptr<framework::ExecutorPrepareContext> ctx_{nullptr};
  mutable std::shared_ptr<framework::InterpreterCore> core_{nullptr};
Z
zhupengyang 已提交
313
  mutable framework::Scope *cached_inference_scope_{nullptr};
Y
Yang Yang(Tony) 已提交
314 315 316 317
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
318
  void Make() override {
Y
Yang Yu 已提交
319
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
320 321 322 323 324 325 326
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
327
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
328
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
329
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
330 331 332 333 334
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
335 336
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
337 338 339 340
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Y
Yang Yang(Tony) 已提交
341 342 343 344 345 346 347
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
348 349
  WhileGradOp(const std::string &type,
              const framework::VariableNameMap &inputs,
Y
Yang Yang(Tony) 已提交
350 351 352 353
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

354 355 356
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
357
    PADDLE_ENFORCE_EQ(
358 359
        Attr<bool>("is_test"),
        false,
360 361
        platform::errors::InvalidArgument(
            "WhileGradOp is only callable when is_test is false."));
362 363 364
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
365

Y
Yu Yang 已提交
366
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
H
hong 已提交
367
    auto *parent_block = block->ParentBlock();
S
sneaxiy 已提交
368 369

    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
370
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
Y
Yang Yang(Tony) 已提交
371 372 373 374

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
375 376 377 378
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

379 380
    PADDLE_ENFORCE_EQ(outside_og_names.size(),
                      inside_og_names.size(),
381 382 383 384 385 386
                      platform::errors::InvalidArgument(
                          "The number of original output gradient names "
                          "does not match the number of backward input "
                          "gradient names. The number of Backward input "
                          "names is %d and the numbers of original output "
                          "gradient names is %d.",
387 388
                          outside_og_names.size(),
                          inside_og_names.size()));
Y
Yang Yang(Tony) 已提交
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403
    LOG_FIRST_N(INFO, 1)
        << "[ControlFlow][WhileGradOp] New Executor is Running.";
    if (!core_ || !platform::is_same_place(core_->GetPlace(), dev_place)) {
      std::set<std::string> skip_gc_vars(skip_vars.begin(), skip_vars.end());
      framework::Scope placeholder;  // Don't care if it's valid, just for
                                     // initialize InterpreterCore
      framework::interpreter::ExecutionConfig execution_config;
      execution_config.create_local_scope = false;
      execution_config.used_for_control_flow_op = true;
      execution_config.skip_gc_vars =
          std::set<std::string>(skip_vars.begin(), skip_vars.end());

      core_.reset(new framework::InterpreterCore(
          dev_place, *block, &placeholder, execution_config));
404 405
    }

Y
Yang Yang(Tony) 已提交
406
    for (auto cur_scope_iter = step_scopes->rbegin();
407 408
         cur_scope_iter != step_scopes->rend();
         ++cur_scope_iter) {
M
minqiyang 已提交
409 410
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
Y
Yang Yang(Tony) 已提交
411 412 413 414 415
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
M
minqiyang 已提交
416 417
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
C
chengduo 已提交
418 419 420 421
        if (scope.FindVar(outside_og_name) == nullptr) {
          continue;
        }

H
hong 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto &og_outside = *scope.FindVar(outside_og_name);
          if (og_outside.IsType<phi::DenseTensor>() &&
              !og_outside.GetMutable<phi::DenseTensor>()->IsInitialized()) {
            auto *var_desc = parent_block->FindVarRecursive(outside_og_name);
            PADDLE_ENFORCE_NOT_NULL(var_desc,
                                    platform::errors::PreconditionNotMet(
                                        "Var `%s` is not found in parent "
                                        "block, can't fill constant.",
                                        outside_og_name));
            auto shape = var_desc->GetShape();
            VLOG(8) << "Found uninitialized tensor " << outside_og_name
                    << " in step 0, fill it with 0.0f. dims="
                    << phi::make_ddim(shape);
            framework::AttributeMap attrs;
            attrs["dtype"] = var_desc->GetDataType();
            attrs["shape"] = phi::vectorize<int>(phi::make_ddim(shape));
            attrs["value"] = 0.0f;

            auto var_name = outside_og_name;
            auto zero_op =
                framework::OpRegistry::CreateOp("fill_constant",
                                                framework::VariableNameMap{},
                                                {{"Out", {var_name}}},
                                                attrs);
            zero_op->Run(scope, dev_place);
          }
        }

451 452
        auto &og_outside = *scope.FindVar(outside_og_name);
        auto &og_inside = *cur_scope.Var(inside_og_name);
453 454 455
        if (og_outside.IsType<phi::DenseTensor>()) {
          auto &outside_tensor = og_outside.Get<phi::DenseTensor>();
          auto &inside_tensor = *og_inside.GetMutable<phi::DenseTensor>();
Y
Yang Yang(Tony) 已提交
456 457
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
458
        } else if (og_outside.IsType<framework::LoDTensorArray>()) {
459 460
          auto outside_array =
              og_outside.GetMutable<framework::LoDTensorArray>();
Y
Yang Yang(Tony) 已提交
461
          auto &inside_array =
462
              *og_inside.GetMutable<framework::LoDTensorArray>();
463 464 465
          inside_array.clear();
          inside_array.resize(outside_array->size());
          VLOG(8) << outside_og_name << " size = " << outside_array->size();
Y
Yang Yang(Tony) 已提交
466 467

          for (size_t j = 0; j < inside_array.size(); ++j) {
468 469 470 471 472 473 474
            if (!outside_array->at(j).IsInitialized()) {
              outside_array->at(j).Resize({0});
            }
            VLOG(8) << j << " " << outside_array->at(j).numel();
            if (outside_array->at(j).numel() != 0) {
              inside_array[j].set_lod(outside_array->at(j).lod());
              inside_array[j].ShareDataWith(outside_array->at(j));
Y
Yang Yang(Tony) 已提交
475
            } else {
476
              PADDLE_ENFORCE_EQ(
477 478
                  inside_array[j].numel(),
                  0,
479 480 481
                  platform::errors::InvalidArgument(
                      "The numel of %d-th element of var %s (LoDTensorArray) "
                      "in while block must be 0, but received its numel is %d.",
482 483 484
                      j,
                      inside_og_name,
                      inside_array[j].numel()));
Y
Yang Yang(Tony) 已提交
485 486
            }
          }
C
chengduo 已提交
487
        } else {
488
          PADDLE_THROW(platform::errors::Unimplemented(
489 490
              "Currently only support phi::DenseTensor and "
              "phi::DenseTensorArray in "
491
              "WhileGradOp."));
Y
Yang Yang(Tony) 已提交
492 493
        }
      }
494

495 496 497
      BuildScopeForControlFlowOp(*core_, *block, *cur_scope_iter);
      core_->reset_scope(*cur_scope_iter);
      core_->Run({}, false);
Y
Yang Yang(Tony) 已提交
498

C
chengduo 已提交
499 500 501
      // The Outputs(kXGRAD) contains the names of the gradient of parameters
      // and inputs.
      auto &pg_ig_names = Outputs(kXGRAD);
Y
Yang Yu 已提交
502
      auto &p_names = Inputs(kX);
503 504
      PADDLE_ENFORCE_EQ(pg_ig_names.size(),
                        p_names.size(),
505 506 507 508 509
                        platform::errors::PreconditionNotMet(
                            "The number of names in Outputs(X@GRAD) does not "
                            "match the number of names in Inputs(X). The "
                            "number of names in Outputs(X@GRAD) is %d and "
                            "the number of names in Inputs(X) is %d.",
510 511
                            pg_ig_names.size(),
                            p_names.size()));
C
chengduo 已提交
512 513
      for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
        if (pg_ig_names[param_id] == framework::kEmptyVarName) {
514
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
515 516
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
517

C
chengduo 已提交
518 519 520 521
        // for some grad_op, their input doesn't have gradient,
        // for example lookup_table_grad_op, the input(Idx) doesn't have
        // gradient.
        auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
522
        PADDLE_ENFORCE_NOT_NULL(
523 524 525
            pg_ig_var,
            platform::errors::NotFound("Variable %s is not found.",
                                       inside_grad_name));
C
chengduo 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
        if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
          auto pg_ig_lod_t_arr =
              pg_ig_var->GetMutable<framework::LoDTensorArray>();
          bool empty = true;
          for (auto &each : *pg_ig_lod_t_arr) {
            if (each.numel() != 0) {
              empty = false;
              break;
            }
          }
          if (empty) {
            LOG(WARNING) << pg_ig_names[param_id]
                         << " is not found in cur_scope.";
            continue;
          }
        }

Y
Yang Yang(Tony) 已提交
543
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
544 545 546 547 548 549 550 551
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

H
hong 已提交
552 553 554 555
        auto is_var_input_and_output =
            std::find(outside_og_names.begin(),
                      outside_og_names.end(),
                      pg_ig_names[param_id]) != outside_og_names.end();
556

Y
Yang Yang(Tony) 已提交
557 558 559
        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
560
          PADDLE_ENFORCE_NOT_NULL(
561 562 563
              var,
              platform::errors::NotFound("Variable %s is not found.",
                                         inside_grad_name));
564
          PADDLE_ENFORCE_EQ(
C
chengduoZH 已提交
565
              var->IsType<framework::LoDTensorArray>() ||
566
                  var->IsType<phi::DenseTensor>(),
567 568 569
              true,
              platform::errors::InvalidArgument(
                  "Currently the type of var only can be LoDTensorArray, "
570
                  "or phi::DenseTensor, but the received var[%s] is %s.",
571 572
                  inside_grad_name,
                  framework::ToTypeName(var->Type())));
C
chengduo 已提交
573

H
hong 已提交
574
          if (!is_var_input_and_output && var->IsType<phi::DenseTensor>()) {
575
            auto &inside_tensor = var->Get<phi::DenseTensor>();
Y
Yang Yang(Tony) 已提交
576
            framework::AttributeMap attrs;
577 578
            attrs["dtype"] =
                framework::TransToProtoVarType(inside_tensor.dtype());
579
            attrs["shape"] = phi::vectorize<int>(inside_tensor.dims());
Y
Yang Yang(Tony) 已提交
580 581
            attrs["value"] = 0.0f;

C
chengduo 已提交
582
            auto var_name = pg_ig_names[param_id];
583 584 585 586 587
            auto zero_op =
                framework::OpRegistry::CreateOp("fill_constant",
                                                framework::VariableNameMap{},
                                                {{"Out", {var_name}}},
                                                attrs);
D
dzhwinter 已提交
588
            zero_op->Run(scope, dev_place);
589 590
            scope.FindVar(var_name)->GetMutable<phi::DenseTensor>()->set_lod(
                inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
591 592
          }
        }
H
hong 已提交
593
        if (!is_var_input_and_output) {
594 595
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
          auto sum_op = framework::OpRegistry::CreateOp(
596 597
              "sum",
              {{"X", {pg_ig_names[param_id], new_inside_name}}},
598 599 600 601
              {{"Out", {pg_ig_names[param_id]}}},
              framework::AttributeMap{{"use_mkldnn", {false}}});
          sum_op->Run(cur_scope, dev_place);
          cur_scope.Rename(new_inside_name, inside_grad_name);
H
hong 已提交
602 603
        } else {
          ShareVariable(cur_scope, scope, pg_ig_names[param_id]);
604
        }
Y
Yang Yang(Tony) 已提交
605
      }
606 607
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
608
    }
609
    step_scopes->clear();
Y
Yang Yang(Tony) 已提交
610
  }
611

H
hong 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  void ShareVariable(const framework::Scope &source,
                     const framework::Scope &dest,
                     std::string name) const {
    auto from_var = source.FindVar(name);
    auto to_var = dest.FindVar(name);
    if (from_var->IsType<phi::DenseTensor>()) {
      if (from_var->Get<phi::DenseTensor>().IsInitialized()) {
        to_var->GetMutable<phi::DenseTensor>()->ShareDataWith(
            from_var->Get<phi::DenseTensor>());
      }
    } else if (from_var->IsType<framework::LoDTensorArray>()) {
      auto from_arr = from_var->GetMutable<framework::LoDTensorArray>();
      auto to_arr = to_var->GetMutable<framework::LoDTensorArray>();
      to_arr->clear();
      to_arr->resize(from_arr->size());
      for (size_t i = 0; i < to_arr->size(); ++i) {
        if (from_arr->at(i).IsInitialized()) {
          to_arr->at(i).ShareDataWith(from_arr->at(i));
        }
      }
    }
  }

635 636 637 638
 private:
  mutable std::shared_ptr<framework::Executor> executor_{nullptr};
  mutable std::unique_ptr<framework::ExecutorPrepareContext> ctx_{nullptr};
  mutable std::shared_ptr<framework::InterpreterCore> core_{nullptr};
Y
Yang Yang(Tony) 已提交
639 640
};

H
hong 已提交
641 642
template <typename T>
class WhileGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yang Yang(Tony) 已提交
643
 public:
H
hong 已提交
644
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yang Yang(Tony) 已提交
645 646

 protected:
647
  void Apply(GradOpPtr<T> while_grad) const override {
F
Update  
fengjiayi 已提交
648
    while_grad->SetType("while_grad");
H
hong 已提交
649 650 651
    while_grad->SetInput(kX, this->Input(kX));
    while_grad->SetInput(kOutputs, this->Output(kOutputs));
    while_grad->SetInput(kStepScopes, this->Output(kStepScopes));
F
Update  
fengjiayi 已提交
652 653

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
654 655
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
656 657 658

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
659 660 661 662
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
663 664
      }
    }
H
hong 已提交
665 666
    auto igs = this->InputGrad(kX, /*do not drop empty gradient*/ false);

667
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
668
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
M
minqiyang 已提交
669
        VLOG(8) << "Ignore " << each_ig;
670 671 672
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
673
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
674 675 676 677

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
H
hong 已提交
678 679
    block_ins.reserve(this->Input(kX).size() + this->Output(kOutputs).size());
    for (auto &p : this->Input(kX)) {
F
fengjiayi 已提交
680 681
      block_ins.insert(p);
    }
H
hong 已提交
682
    for (auto &o : this->Output(kOutputs)) {
F
fengjiayi 已提交
683 684
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
685
    std::unordered_set<std::string> output_grads;
H
hong 已提交
686

F
Update  
fengjiayi 已提交
687 688 689 690
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
691 692 693

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
694
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
695 696
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
697 698
          continue;
        }
Y
Yu Yang 已提交
699
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
700
      }
F
Update  
fengjiayi 已提交
701
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
702
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
703 704
      }
    }
Y
Yang Yang(Tony) 已提交
705

Y
Yu Yang 已提交
706 707
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
708 709
    std::copy(
        output_grads.begin(), output_grads.end(), output_grads_list.begin());
Y
Yu Yang 已提交
710
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
711 712

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
713
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
714 715
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
716
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
717

S
sneaxiy 已提交
718
    while_grad->SetAttr(kSkipEagerDeletionVars, std::vector<std::string>());
Y
Yang Yang(Tony) 已提交
719 720 721
  }
};

722 723
class WhileGradOpVarTypeInference
    : public framework::StaticGraphVarTypeInference {
Y
Yang Yang(Tony) 已提交
724
 public:
M
minqiyang 已提交
725
  void operator()(framework::InferVarTypeContext *ctx) const override {
726 727
    auto p_names = Input(ctx, kX);
    auto pg_ig_names = Output(ctx, framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
728 729

    for (size_t i = 0; i < p_names.size(); ++i) {
730
      if (HasVar(ctx, pg_ig_names[i])) {
M
minqiyang 已提交
731
        VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
732 733 734
                << " type: " << GetType(ctx, p_names[i]);
        SetType(ctx, pg_ig_names[i], GetType(ctx, p_names[i]));
        SetDataType(ctx, pg_ig_names[i], GetDataType(ctx, p_names[i]));
Y
Yang Yang(Tony) 已提交
735 736 737 738 739 740 741 742
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
743 744
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
745 746
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));
C
chengduo 已提交
747
    auto pg_ig_names = ctx->Outputs(kXGRAD);
748 749
    auto in_var_ptrs = ctx->GetInputVarPtrs(kX);
    auto out_var_ptrs = ctx->GetOutputVarPtrs(kXGRAD);
750 751
    PADDLE_ENFORCE_EQ(in_var_ptrs.size(),
                      out_var_ptrs.size(),
752 753 754
                      platform::errors::InvalidArgument(
                          "The size of Inputs(X) must be the same as "
                          "the size of Outputs(X@GRAD)."));
X
Xin Pan 已提交
755 756

    for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
C
chengduo 已提交
757
      if (pg_ig_names[i] == framework::kEmptyVarName) {
Y
Yang Yang(Tony) 已提交
758 759
        continue;
      }
760
      framework::VarDesc *in_var =
R
Ruibiao Chen 已提交
761 762
          PADDLE_GET(framework::VarDesc *, in_var_ptrs[i]);
      PADDLE_GET(framework::VarDesc *, out_var_ptrs[i])
763
          ->SetShape(in_var->GetShape());
Y
Yang Yang(Tony) 已提交
764 765 766 767
    }
  }
};

Y
Yang Yang(Tony) 已提交
768 769 770
}  // namespace operators
}  // namespace paddle

H
hong 已提交
771
REGISTER_OPERATOR(
772 773 774
    while,
    paddle::operators::WhileOp,
    paddle::operators::WhileOpMaker,
H
hong 已提交
775
    paddle::operators::WhileGradOpMaker<paddle::framework::OpDesc>);
776 777
REGISTER_OPERATOR(while_grad,
                  paddle::operators::WhileGradOp,
Y
Yang Yang(Tony) 已提交
778 779
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);