momentum.py 25.3 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
Jiangxinz 已提交
15 16
import warnings

17
import paddle
18 19
from paddle import _C_ops
from paddle.fluid.framework import in_dygraph_mode
20 21
from paddle.fluid.regularizer import L2DecayRegularizer

22
from ..fluid import core, framework, unique_name
23 24
from ..fluid.layer_helper import LayerHelper
from .optimizer import Optimizer
J
Jiawei Wang 已提交
25

26 27
__all__ = []

J
Jiawei Wang 已提交
28 29

class Momentum(Optimizer):
30
    r"""
J
Jiawei Wang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

        &\quad   param = param - (gradient + mu * velocity) * learning\_rate

        & else:

        &\quad   param = param - learning\_rate * velocity

    Parameters:

        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        momentum (float): Momentum factor. The default value is 0.9.
55 56 57 58 59
        parameters (list|tuple, optional): List|Tuple of ``Tensor`` to update to minimize ``loss``. \
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
60
            The default value is None in static graph mode, at this time all parameters will be updated.
J
Jiawei Wang 已提交
61
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
62 63 64 65 66 67
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
68 69 70 71
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
H
huangxu96 已提交
72 73 74
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
            Often choose to be ``1.0/batch_size``.
75
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
J
Jiawei Wang 已提交
76 77 78 79 80 81 82 83
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python

            import paddle
84 85

            inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
J
Jiawei Wang 已提交
86 87 88 89 90 91 92 93 94 95
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            momentum.step()
            momentum.clear_grad()
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            momentum = paddle.optimizer.Momentum(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
                weight_decay=0.01,
114
                momentum=0.9)
115 116 117 118
            out.backward()
            momentum.step()
            momentum.clear_grad()

J
Jiawei Wang 已提交
119 120 121
    """
    _velocity_acc_str = "velocity"

122 123 124 125 126 127 128 129 130 131 132 133 134
    def __init__(
        self,
        learning_rate=0.001,
        momentum=0.9,
        parameters=None,
        use_nesterov=False,
        weight_decay=None,
        grad_clip=None,
        multi_precision=False,
        rescale_grad=1.0,
        use_multi_tensor=False,
        name=None,
    ):
J
Jiawei Wang 已提交
135 136 137 138
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        if momentum is None:
            raise ValueError("momentum is not set")
139

140 141 142
        predicate = lambda regular: isinstance(
            regular, (L2DecayRegularizer, float)
        )
143 144 145
        if isinstance(parameters, list):
            if isinstance(parameters[0], dict):
                for param_group in parameters:
146 147 148 149 150
                    decay = (
                        param_group['weight_decay']
                        if 'weight_decay' in param_group
                        else weight_decay
                    )
151 152 153 154 155 156
                    reg_method, reg_coeff = self._update_regularization(decay)
                    param_group['regularization_method'] = reg_method
                    param_group['regularization_coeff'] = reg_coeff
                    py_regular = None if predicate(decay) else decay
                    param_group['weight_decay'] = py_regular

H
huangxu96 已提交
157
        py_regular = None if predicate(weight_decay) else weight_decay
158
        super().__init__(
159 160 161 162 163 164
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=py_regular,
            grad_clip=grad_clip,
            name=name,
        )
J
Jiawei Wang 已提交
165 166 167
        self.type = "momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
168 169 170 171
        (
            self._regularization_method,
            self._regularization_coeff,
        ) = self._update_regularization(weight_decay)
H
huangxu96 已提交
172 173 174 175
        self._multi_precision = multi_precision
        self._rescale_grad = rescale_grad
        self._master_weights = {}

176 177 178 179 180 181 182
        self._default_dict = {
            'momentum': momentum,
            'use_nesterov': use_nesterov,
            'rescale_grad': rescale_grad,
            'regularization_method': self._regularization_method,
            'regularization_coeff': self._regularization_coeff,
        }
183 184
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
185 186 187 188 189 190
            self._param_dict = self._create_multi_tensor_dict()
            self._velocity_dict = self._create_multi_tensor_dict()
            self._master_weight_dict = self._create_multi_tensor_dict()
            self._master_weight_dict['FP32_LODTensor'] = None
            self._regularization_method_dict = self._create_multi_tensor_dict()
            self._regularization_coeff_dict = self._create_multi_tensor_dict()
191 192 193

    def _update_regularization(self, weight_decay):
        reg_method = ""
194
        reg_coeff = 0.0
195

196
        if isinstance(weight_decay, L2DecayRegularizer):
197 198
            reg_method = "l2_decay"
            reg_coeff = weight_decay._regularization_coeff
199
        if isinstance(weight_decay, float):
200 201 202
            reg_method = "l2_decay"
            reg_coeff = weight_decay
        return reg_method, reg_coeff
J
Jiawei Wang 已提交
203

H
huangxu96 已提交
204
    def _create_master_weight(self, param):
205 206 207 208 209 210 211
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
212
            var = paddle.static.create_global_var(
213 214 215 216 217 218
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
219
            block = self.helper.startup_program.global_block()
220 221 222 223 224 225 226 227 228
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
229
            self._master_weights[param.name] = var
H
huangxu96 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
244 245 246 247 248 249
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
H
huangxu96 已提交
250
        target_name = target_param.name
251 252 253 254
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
255 256
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
257 258 259
                    name, target_name
                )
            )
H
huangxu96 已提交
260 261
        return self._accumulators[name][target_name]

J
Jiawei Wang 已提交
262
    def _create_accumulators(self, block, parameters):
263
        '''
J
Jiabin Yang 已提交
264
        if framework._non_static_mode():
265
            return
266
        '''
J
Jiawei Wang 已提交
267
        assert isinstance(block, framework.Block)
268 269 270 271

        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

272
        for p in parameters:
273 274
            if p.name in self._already_create_accumulater:
                continue
275 276 277
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
278
                self._already_create_accumulater.add(p.name)
279
                continue
280 281 282 283
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
284 285 286 287 288
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Momentum optimizer."
                )
            self._add_accumulator(self._velocity_acc_str, p)
289
            self._already_create_accumulater.add(p.name)
J
Jiawei Wang 已提交
290

291
    def _create_regularization_of_grad(self, param, grad, regularization=None):
292
        """Create and add backward regularization Operators
293

294 295 296 297
        Function helper of append_regularization_ops.
        """
        # If ParamAttr is set to L2Decay, we skip doing regularization here. And then we fused
        # L2Decay with momentum which can refer to _append_optimize_op below.
298 299 300
        if hasattr(param, 'regularizer') and isinstance(
            param.regularizer, L2DecayRegularizer
        ):
301
            return grad
302
        return super()._create_regularization_of_grad(
303 304
            param, grad, regularization
        )
305

J
Jiawei Wang 已提交
306 307
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
308 309
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
J
Jiawei Wang 已提交
310

311 312 313
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
J
Jiawei Wang 已提交
314 315
        lr = self._create_param_lr(param_and_grad)

316
        # For fusion of momentum and l2decay
317 318 319 320 321 322 323 324 325 326 327
        param = param_and_grad[0]
        regularization_method = self._regularization_method
        regularization_coeff = self._regularization_coeff
        if hasattr(param, 'regularizer'):
            # we skip param's l2decay before, so fuse it with momentum here.
            if isinstance(param.regularizer, L2DecayRegularizer):
                regularization_method = "l2_decay"
                regularization_coeff = param.regularizer._regularization_coeff
            # the param's regularization has been done before, we avoid do l2decay in momentum.
            elif param.regularizer is not None:
                regularization_method = ""
328
                regularization_coeff = 0.0
329

330 331 332 333 334 335 336 337 338
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
339

340 341 342
        if in_dygraph_mode():
            if isinstance(param_and_grad, dict):
                self._update_regularization(param_and_grad['weight_decay'])
343 344 345 346 347 348 349 350 351 352 353 354 355
            return _C_ops.momentum_(
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                self._momentum,
                self._use_nesterov,
                regularization_method,
                regularization_coeff,
                find_master,
                self._rescale_grad,
            )
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        else:
            attrs = {
                "mu": self._momentum,
                "use_nesterov": self._use_nesterov,
                "regularization_method": regularization_method,
                "regularization_coeff": regularization_coeff,
                "multi_precision": find_master,
                "rescale_grad": self._rescale_grad,
            }

            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "Velocity": [velocity_acc],
                "LearningRate": [lr],
            }

            outputs = {
                "ParamOut": [param_and_grad[0]],
                "VelocityOut": [velocity_acc],
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            # create the momentum optimize op
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
390

391
            return momentum_op
392

393
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            velocity_acc = self._get_accumulator(self._velocity_acc_str, param)
            regularization_method = self._regularization_method
            regularization_coeff = self._regularization_coeff
            if hasattr(param, 'regularizer'):
                # we skip param's l2decay before, so fuse it with momentum here.
                if isinstance(param.regularizer, L2DecayRegularizer):
                    regularization_method = "l2_decay"
411 412 413
                    regularization_coeff = (
                        param.regularizer._regularization_coeff
                    )
414
                elif param.regularizer is not None:
415 416 417
                    regularization_method = ""
                    regularization_coeff = 0.0
            if param.dtype == paddle.float32:
418 419
                self._param_dict['FP32_LODTensor'][param_group_idx].append(
                    param
420
                )
421 422
                self._velocity_dict['FP32_LODTensor'][param_group_idx].append(
                    velocity_acc
423
                )
424 425 426 427 428 429 430
                # fp32 no master weight
                self._regularization_method_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(regularization_method)
                self._regularization_coeff_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(regularization_coeff)
431
            elif param.dtype == paddle.float16:
432 433
                self._param_dict['FP16_LODTensor'][param_group_idx].append(
                    param
434
                )
435 436
                self._velocity_dict['FP16_LODTensor'][param_group_idx].append(
                    velocity_acc
437
                )
438 439 440 441 442 443 444 445 446 447 448 449 450 451
                if self._multi_precision:
                    self._master_weight_dict['FP16_LODTensor'][
                        param_group_idx
                    ].append(self._master_weights[param.name])
                else:
                    self._master_weight_dict['FP16_LODTensor'][
                        param_group_idx
                    ] = None
                self._regularization_method_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(regularization_method)
                self._regularization_coeff_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(regularization_coeff)
452 453 454 455 456
            else:
                raise ValueError(
                    "Now multi_tensor_momentum only support fp32 and fp16 parameters and grad is LOD_TENSOR."
                )

457
    def _append_optimize_multi_tensor_op(
458 459 460 461
        self,
        target_block,
        parameters_and_grads,
        param_group_idx,
462
    ):
463
        """
464 465 466 467 468 469 470 471 472 473 474 475
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
476 477 478 479 480
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
481 482 483
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
484 485 486 487 488
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
489 490 491 492 493 494 495 496 497 498
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
499 500 501 502 503 504 505
                    param_grad_dict.update(
                        {
                            k: v
                            for k, v in parameters_and_grads.items()
                            if k != 'params'
                        }
                    )
506
                    param_and_grad = self._update_param_group(param_grad_dict)
507 508 509 510 511
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
512 513 514
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
515 516 517 518 519
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
520 521 522 523 524 525
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
526
            if len(self._param_dict[key][param_group_idx]) > 0:
527
                find_master = self._multi_precision and key == 'FP16_LODTensor'
528

529 530 531 532 533 534 535
                master_weight = self._master_weight_dict[key]
                master_weight = (
                    master_weight[param_group_idx]
                    if master_weight is not None
                    else None
                )

536
                if in_dygraph_mode():
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
                    found_inf = self._get_auxiliary_var('found_inf')
                    if found_inf:
                        if isinstance(found_inf, core.eager.Tensor):
                            self._set_auxiliary_var('found_inf', True)
                    else:
                        if isinstance(found_inf, core.eager.Tensor):
                            self._set_auxiliary_var('found_inf', False)
                        _, _, _ = _C_ops.merged_momentum_(
                            self._param_dict[key][param_group_idx],
                            grad_dict[key],
                            self._velocity_dict[key][param_group_idx],
                            lr_dict[key],
                            master_weight,
                            self._momentum,
                            self._use_nesterov,
                            self._regularization_method_dict[key][
                                param_group_idx
                            ],
                            self._regularization_coeff_dict[key][
                                param_group_idx
                            ],
                            find_master,
                            self._rescale_grad,
                        )
561 562
                else:
                    inputs = {
563
                        "Param": self._param_dict[key][param_group_idx],
564
                        "Grad": grad_dict[key],
565
                        "Velocity": self._velocity_dict[key][param_group_idx],
566 567 568
                        "LearningRate": lr_dict[key],
                    }
                    outputs = {
569 570 571 572
                        "ParamOut": self._param_dict[key][param_group_idx],
                        "VelocityOut": self._velocity_dict[key][
                            param_group_idx
                        ],
573 574
                    }
                    attrs = {
575 576 577 578
                        "mu": self._momentum,
                        "use_nesterov": self._use_nesterov,
                        "regularization_method": self._regularization_method_dict[
                            key
579 580
                        ][
                            param_group_idx
581 582 583
                        ],
                        "regularization_coeff": self._regularization_coeff_dict[
                            key
584
                        ][param_group_idx],
585
                    }
586
                    if find_master:
587 588 589
                        inputs["MasterParam"] = self._master_weight_dict[key][
                            param_group_idx
                        ]
590
                        outputs["MasterParamOut"] = self._master_weight_dict[
591
                            key
592
                        ][param_group_idx]
593
                        attrs["multi_precision"] = find_master
594 595 596 597 598 599 600
                    target_block.append_op(
                        type="merged_momentum",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
601 602
        return None

603
    def _update_param_group(self, parameters):
604 605 606 607 608 609 610 611 612
        self._momentum = parameters.get(
            'momentum', self._default_dict['momentum']
        )
        self._use_nesterov = parameters.get(
            'use_nesterov', self._default_dict['use_nesterov']
        )
        self._rescale_grad = parameters.get(
            'rescale_grad', self._default_dict['rescale_grad']
        )
613
        self._regularization_method = parameters.get(
614 615
            'regularization_method', self._default_dict['regularization_method']
        )
616
        self._regularization_coeff = parameters.get(
617 618
            'regularization_coeff', self._default_dict['regularization_coeff']
        )
619 620
        parameters = parameters.get('params')
        return parameters