sequence_conv_op.h 6.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
17
#include "paddle/operators/math/context_project.h"
C
chengduoZH 已提交
18
#include "paddle/operators/math/math_function.h"
C
chengduoZH 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename Place, typename T>
C
chengduoZH 已提交
27
class SequenceConvKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
28 29 30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
C
chengduoZH 已提交
32
    auto filter = *context.Input<Tensor>("Filter");
33

C
chengduoZH 已提交
34
    out->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
35
    context.ShareLoD("X", "Out");
C
chengduoZH 已提交
36

C
chengduoZH 已提交
37 38 39 40
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
41 42 43 44

    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");

C
chengduoZH 已提交
45
    const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
46
    if (padding_trainable) {
C
chengduoZH 已提交
47
      padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
48 49 50 51
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
52
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
53

C
chengduoZH 已提交
54
    framework::DDim col_shape = {in->dims()[0],
C
chengduoZH 已提交
55
                                 context_length * sequence_width};
C
chengduoZH 已提交
56
    Tensor col;
C
chengduoZH 已提交
57 58
    col.mutable_data<T>(col_shape, context.GetPlace());
    // Because if padding_trainable is false, padding data should be zeros.
C
chengduoZH 已提交
59
    math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
60
    set_zero(context.device_context(), &col, static_cast<T>(0));
61

C
chengduoZH 已提交
62
    math::ContextProjectFunctor<Place, T> seq_project_functor;
63

64
    seq_project_functor(context.device_context(), *in, *padding_data,
C
chengduoZH 已提交
65
                        padding_trainable, context_start, context_length,
66
                        context_stride, up_pad, down_pad, &col);
67

C
chengduoZH 已提交
68
    math::matmul<Place, T>(context.device_context(), col, false, filter, false,
C
chengduoZH 已提交
69
                           static_cast<T>(1.0), out, static_cast<T>(0.0));
C
chengduoZH 已提交
70 71 72 73
  }
};

template <typename Place, typename T>
C
chengduoZH 已提交
74
class SequenceConvGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
75 76 77
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
C
chengduoZH 已提交
78
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
79
    auto* filter_g = context.Output<Tensor>(framework::GradVarName("Filter"));
C
chengduoZH 已提交
80
    auto* padding_data_g =
C
chengduoZH 已提交
81
        context.Output<Tensor>(framework::GradVarName("PaddingData"));
82
    auto* in = context.Input<LoDTensor>("X");
C
chengduoZH 已提交
83
    auto* filter = context.Input<Tensor>("Filter");
C
chengduoZH 已提交
84

C
chengduoZH 已提交
85 86 87 88
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
89

90
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
C
chengduoZH 已提交
91
                      "Only support one level sequence now.");
92
    auto lod_g_level_0 = in->lod()[0];
C
chengduoZH 已提交
93

C
chengduoZH 已提交
94 95
    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
96
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
97

C
chengduoZH 已提交
98
    math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
99 100 101
    // use col_shape in the im2col calculation
    framework::DDim col_shape = {in->dims()[0],
                                 sequence_width * context_length};
C
chengduoZH 已提交
102
    Tensor col;
C
chengduoZH 已提交
103 104 105 106

    if (in_g || filter_g || (padding_trainable && padding_data_g)) {
      col.mutable_data<T>(col_shape, context.GetPlace());
      // Because if padding_trainable is false, padding data should be zeros.
C
chengduoZH 已提交
107
      set_zero(context.device_context(), &col, static_cast<T>(0));
C
chengduoZH 已提交
108 109 110
      math::matmul<Place, T>(context.device_context(), *out_g, false, *filter,
                             true, T(1.0), &col, T(1.0));
    }
C
chengduoZH 已提交
111 112
    math::ContextProjectFunctor<Place, T> seq_project_functor;
    math::ContextProjectGradFunctor<Place, T> seq_project_grad_functor;
C
chengduoZH 已提交
113

C
chengduoZH 已提交
114 115
    if (in_g) {
      in_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
116
      in_g->set_lod(in->lod());
C
chengduoZH 已提交
117
      set_zero(context.device_context(), in_g, static_cast<T>(0));
118

119 120 121 122
      seq_project_grad_functor(context.device_context(), *in_g,
                               padding_trainable, context_start, context_length,
                               context_stride, up_pad, down_pad, false, true,
                               padding_data_g, &col);
C
chengduoZH 已提交
123 124 125 126
    }

    if (padding_trainable && padding_data_g) {
      padding_data_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
127
      set_zero(context.device_context(), padding_data_g, static_cast<T>(0));
C
chengduoZH 已提交
128

C
chengduoZH 已提交
129
      LoDTensor* input = const_cast<LoDTensor*>(in);
C
sss  
chengduoZH 已提交
130
      seq_project_grad_functor(context.device_context(), *input,
131 132 133
                               padding_trainable, context_start, context_length,
                               context_stride, up_pad, down_pad, true, false,
                               padding_data_g, &col);
C
chengduoZH 已提交
134
    }
C
chengduoZH 已提交
135 136 137

    if (filter_g) {
      filter_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
138
      set_zero(context.device_context(), filter_g, static_cast<T>(0));
C
chengduoZH 已提交
139

C
chengduoZH 已提交
140 141
      Tensor filter_grad = *filter_g;
      LoDTensor out_grad = *out_g;
C
chengduoZH 已提交
142

C
chengduoZH 已提交
143
      const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
144
      if (padding_trainable) {
C
chengduoZH 已提交
145
        padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
146 147
      }

148
      seq_project_functor(context.device_context(), *in, *padding_data,
C
chengduoZH 已提交
149
                          padding_trainable, context_start, context_length,
150
                          context_stride, up_pad, down_pad, &col);
C
chengduoZH 已提交
151

C
chengduoZH 已提交
152 153
      math::matmul<Place, T>(context.device_context(), col, true, out_grad,
                             false, T(1.0), &filter_grad, T(1.0));
C
chengduoZH 已提交
154
    }
C
chengduoZH 已提交
155 156 157 158 159
  }
};

}  // namespace operators
}  // namespace paddle