cinn_launch_op.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

S
sneaxiy 已提交
17
#include <chrono>
18 19 20
#include <memory>
#include <string>
#include <unordered_map>
21
#include <unordered_set>
22

23
#include "cinn/common/target.h"
24
#include "gflags/gflags.h"
25
#include "paddle/fluid/framework/data_type.h"
26 27 28
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
29
#include "paddle/fluid/operators/cinn/cinn_launch_context.h"
30
#include "paddle/fluid/operators/cinn/cinn_op_helper.h"
31
#include "paddle/fluid/platform/profiler.h"
32

33
DECLARE_bool(enable_pe_launch_cinn);
34 35 36
namespace paddle {
namespace operators {

37 38 39 40 41 42 43 44 45 46 47
using CinnCompiler = framework::paddle2cinn::CinnCompiler;
using CinnCompiledObject = framework::paddle2cinn::CinnCompiledObject;

namespace details {

// Tranform Paddle place to CINN target
const ::cinn::common::Target& PlaceToCinnTarget(const platform::Place& place);

// Print detailed compilation result of graph for debug
void DebugCinnCompiledResult(const CinnCompiledObject& result);

48 49
// Launch cinn to execute compiled executable program and wait done
void LaunchCinnExecution(const CinnCompiledObject& compiled_obj,
50 51
                         const CinnLaunchContext& context,
                         void* stream);
52 53 54

// Set cinn FLAGS (such as FLAGS_cinn_cudnn_deterministic) with paddle's FLAGS.
void SetCinnRuntimeFlags();
55

56
}  // namespace details
57 58 59 60 61

template <typename DeviceContext, typename T>
class CinnLaunchOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
62 63
    const auto& scope = ctx.scope();
    const auto& place = ctx.GetPlace();
64
    void* stream = details::GetStream<DeviceContext>(ctx);
65 66
    platform::RecordEvent record_event_1(
        "Step 1. Find graph object and prepare input");
67
    // Step 1. Find graph object and prepare input
68 69
    PADDLE_ENFORCE_EQ(ctx.HasAttr(kCompilationKey),
                      true,
70 71 72
                      platform::errors::NotFound(
                          "No Attribute(%s) found for CinnLaunchOp operator.",
                          kCompilationKey));
73
    const auto& compilation_key = ctx.template Attr<int64_t>(kCompilationKey);
74
    VLOG(4) << "CinnLaunchOp attribute(" << kCompilationKey << ") "
75 76
            << "value:\n"
            << CinnCompiler::GetInstance()->ReadableKey(compilation_key);
77

78
    std::map<std::string, const phi::DenseTensor*> inputs_name2tensor;
79 80
    std::vector<std::string> input_x_variable_names;
    std::vector<std::string> input_no_need_buffer_variable_names;
81
    auto add_name2tensor_fn =
82 83 84
        [&inputs_name2tensor](
            const std::vector<std::string>& variable_names,
            const std::vector<const phi::DenseTensor*>& tensors) {
85
          std::transform(
86 87 88
              variable_names.begin(),
              variable_names.end(),
              tensors.begin(),
89
              std::inserter(inputs_name2tensor, inputs_name2tensor.end()),
90
              [](const std::string& name, const phi::DenseTensor* tensor) {
91 92 93
                return std::make_pair(name, tensor);
              });
        };
94

95
    auto input_x_tensors = ctx.MultiInput<phi::DenseTensor>(kX);
96 97 98 99 100
    if (!input_x_tensors.empty()) {
      input_x_variable_names = std::move(ctx.InputNames(kX));
      add_name2tensor_fn(input_x_variable_names, input_x_tensors);
    }
    auto input_no_need_buffer_tensors =
101
        ctx.MultiInput<phi::DenseTensor>(kNoNeedBufferX);
102 103 104 105 106 107
    if (!input_no_need_buffer_tensors.empty()) {
      input_no_need_buffer_variable_names =
          std::move(ctx.InputNames(kNoNeedBufferX));
      add_name2tensor_fn(input_no_need_buffer_variable_names,
                         input_no_need_buffer_tensors);
    }
108

109 110
    platform::RecordEvent record_event_2(
        "Step 2. Get compilation result of the graph");
111
    // Step 2. Get compilation result of the graph
112
    auto target = details::PlaceToCinnTarget(place);
S
sneaxiy 已提交
113 114 115 116 117 118
    using ClockType = std::chrono::steady_clock;
    std::chrono::time_point<ClockType> start_t, end_t;
    if (VLOG_IS_ON(1)) {
      VLOG(1) << "Starts to compile at thread " << std::this_thread::get_id();
      start_t = ClockType::now();
    }
119
    const auto& cinn_compiled_object = CinnCompiler::GetInstance()->Compile(
120
        compilation_key, inputs_name2tensor, target, stream);
S
sneaxiy 已提交
121 122 123 124 125 126 127
    if (VLOG_IS_ON(1)) {
      end_t = ClockType::now();
      auto time_sec = std::chrono::duration_cast<std::chrono::milliseconds>(
          end_t - start_t);
      VLOG(1) << "Ends to compile at thread " << std::this_thread::get_id()
              << " , time cost : " << time_sec.count() << " ms";
    }
128
    details::DebugCinnCompiledResult(cinn_compiled_object);
129
    auto* launch_context = cinn_compiled_object.launch_context.get();
130

131
    platform::RecordEvent record_event_3("Step 3. Set CINN runtime FLAGS.");
132
    // Step 3. Set CINN runtime FLAGS, such as FLAGS_cinn_cudnn_deterministic.
133 134
    details::SetCinnRuntimeFlags();

135 136 137
    // Step 4. Execute the compiled CINN instructions by a PE or
    //         by the CINN compiled program in sequential order
    if (FLAGS_enable_pe_launch_cinn) {
138 139
      platform::RecordEvent record_event_4(
          "Step 4. Execute the runtime graph by PE.");
140 141 142 143 144
      VLOG(4) << "Execute the runtime graph by PE";
      framework::Scope& exec_scope = scope.NewScope();
      auto* pe = launch_context->InitializePE(place, &exec_scope);
      pe->RunWithoutFetch(launch_context->GetSkipEagerVars());
    } else {
145 146
      platform::RecordEvent record_event_4(
          "Step 4. Execute the compiled executable program.");
147 148 149 150
      VLOG(4) << "Execute the compiled executable program";
      launch_context->UpdateCapturedEnv(scope, place);
      LaunchCinnExecution(cinn_compiled_object, *launch_context, stream);
    }
151
    VLOG(4) << "CinnLaunchOp launch execution done.";
152 153 154 155 156
  }
};

}  // namespace operators
}  // namespace paddle