cinn_launch_op.h 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

S
sneaxiy 已提交
17
#include <chrono>
18 19 20
#include <memory>
#include <string>
#include <unordered_map>
21
#include <unordered_set>
22

23
#include "cinn/common/target.h"
24
#include "gflags/gflags.h"
25
#include "paddle/fluid/framework/data_type.h"
26 27 28
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
29
#include "paddle/fluid/operators/cinn/cinn_launch_context.h"
30
#include "paddle/fluid/operators/cinn/cinn_op_helper.h"
31
#include "paddle/fluid/platform/profiler.h"
32

33
DECLARE_bool(enable_pe_launch_cinn);
34 35 36 37
namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
38 39 40 41 42 43 44 45 46 47 48
using CinnCompiler = framework::paddle2cinn::CinnCompiler;
using CinnCompiledObject = framework::paddle2cinn::CinnCompiledObject;

namespace details {

// Tranform Paddle place to CINN target
const ::cinn::common::Target& PlaceToCinnTarget(const platform::Place& place);

// Print detailed compilation result of graph for debug
void DebugCinnCompiledResult(const CinnCompiledObject& result);

49 50
// Launch cinn to execute compiled executable program and wait done
void LaunchCinnExecution(const CinnCompiledObject& compiled_obj,
51
                         const CinnLaunchContext& context, void* stream);
52 53 54

// Set cinn FLAGS (such as FLAGS_cinn_cudnn_deterministic) with paddle's FLAGS.
void SetCinnRuntimeFlags();
55

56
}  // namespace details
57 58 59 60 61

template <typename DeviceContext, typename T>
class CinnLaunchOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
62 63
    const auto& scope = ctx.scope();
    const auto& place = ctx.GetPlace();
64
    void* stream = details::GetStream<DeviceContext>(ctx);
65 66
    platform::RecordEvent record_event_1(
        "Step 1. Find graph object and prepare input");
67 68 69 70 71
    // Step 1. Find graph object and prepare input
    PADDLE_ENFORCE_EQ(ctx.HasAttr(kCompilationKey), true,
                      platform::errors::NotFound(
                          "No Attribute(%s) found for CinnLaunchOp operator.",
                          kCompilationKey));
72
    const auto& compilation_key = ctx.template Attr<int64_t>(kCompilationKey);
73
    VLOG(4) << "CinnLaunchOp attribute(" << kCompilationKey << ") "
74 75
            << "value:\n"
            << CinnCompiler::GetInstance()->ReadableKey(compilation_key);
76

77
    std::map<std::string, const LoDTensor*> inputs_name2tensor;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    std::vector<std::string> input_x_variable_names;
    std::vector<std::string> input_no_need_buffer_variable_names;
    auto add_name2tensor_fn = [&inputs_name2tensor](
        const std::vector<std::string>& variable_names,
        const std::vector<const LoDTensor*>& tensors) {
      std::transform(
          variable_names.begin(), variable_names.end(), tensors.begin(),
          std::inserter(inputs_name2tensor, inputs_name2tensor.end()),
          [](const std::string& name, const LoDTensor* tensor) {
            return std::make_pair(name, tensor);
          });
    };

    auto input_x_tensors = ctx.MultiInput<LoDTensor>(kX);
    if (!input_x_tensors.empty()) {
      input_x_variable_names = std::move(ctx.InputNames(kX));
      add_name2tensor_fn(input_x_variable_names, input_x_tensors);
    }
    auto input_no_need_buffer_tensors =
        ctx.MultiInput<LoDTensor>(kNoNeedBufferX);
    if (!input_no_need_buffer_tensors.empty()) {
      input_no_need_buffer_variable_names =
          std::move(ctx.InputNames(kNoNeedBufferX));
      add_name2tensor_fn(input_no_need_buffer_variable_names,
                         input_no_need_buffer_tensors);
    }
104

105 106
    platform::RecordEvent record_event_2(
        "Step 2. Get compilation result of the graph");
107
    // Step 2. Get compilation result of the graph
108
    auto target = details::PlaceToCinnTarget(place);
S
sneaxiy 已提交
109 110 111 112 113 114
    using ClockType = std::chrono::steady_clock;
    std::chrono::time_point<ClockType> start_t, end_t;
    if (VLOG_IS_ON(1)) {
      VLOG(1) << "Starts to compile at thread " << std::this_thread::get_id();
      start_t = ClockType::now();
    }
115
    const auto& cinn_compiled_object = CinnCompiler::GetInstance()->Compile(
116
        compilation_key, inputs_name2tensor, target, stream);
S
sneaxiy 已提交
117 118 119 120 121 122 123
    if (VLOG_IS_ON(1)) {
      end_t = ClockType::now();
      auto time_sec = std::chrono::duration_cast<std::chrono::milliseconds>(
          end_t - start_t);
      VLOG(1) << "Ends to compile at thread " << std::this_thread::get_id()
              << " , time cost : " << time_sec.count() << " ms";
    }
124
    details::DebugCinnCompiledResult(cinn_compiled_object);
125
    auto* launch_context = cinn_compiled_object.launch_context.get();
126

127
    platform::RecordEvent record_event_3("Step 3. Set CINN runtime FLAGS.");
128
    // Step 3. Set CINN runtime FLAGS, such as FLAGS_cinn_cudnn_deterministic.
129 130
    details::SetCinnRuntimeFlags();

131 132 133
    // Step 4. Execute the compiled CINN instructions by a PE or
    //         by the CINN compiled program in sequential order
    if (FLAGS_enable_pe_launch_cinn) {
134 135
      platform::RecordEvent record_event_4(
          "Step 4. Execute the runtime graph by PE.");
136 137 138 139 140
      VLOG(4) << "Execute the runtime graph by PE";
      framework::Scope& exec_scope = scope.NewScope();
      auto* pe = launch_context->InitializePE(place, &exec_scope);
      pe->RunWithoutFetch(launch_context->GetSkipEagerVars());
    } else {
141 142
      platform::RecordEvent record_event_4(
          "Step 4. Execute the compiled executable program.");
143 144 145 146
      VLOG(4) << "Execute the compiled executable program";
      launch_context->UpdateCapturedEnv(scope, place);
      LaunchCinnExecution(cinn_compiled_object, *launch_context, stream);
    }
147
    VLOG(4) << "CinnLaunchOp launch execution done.";
148 149 150 151 152
  }
};

}  // namespace operators
}  // namespace paddle