cinn_launch_op.h 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <unordered_map>
20
#include <unordered_set>
21

22
#include "cinn/common/target.h"
23
#include "gflags/gflags.h"
24
#include "paddle/fluid/framework/data_type.h"
25 26 27
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
28
#include "paddle/fluid/operators/cinn/cinn_launch_context.h"
29
#include "paddle/fluid/operators/cinn/cinn_op_helper.h"
30

31
DECLARE_bool(enable_pe_launch_cinn);
32 33 34 35
namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
36 37 38 39 40 41 42 43 44 45 46
using CinnCompiler = framework::paddle2cinn::CinnCompiler;
using CinnCompiledObject = framework::paddle2cinn::CinnCompiledObject;

namespace details {

// Tranform Paddle place to CINN target
const ::cinn::common::Target& PlaceToCinnTarget(const platform::Place& place);

// Print detailed compilation result of graph for debug
void DebugCinnCompiledResult(const CinnCompiledObject& result);

47 48
// Launch cinn to execute compiled executable program and wait done
void LaunchCinnExecution(const CinnCompiledObject& compiled_obj,
49
                         const CinnLaunchContext& context, void* stream);
50 51 52

// Set cinn FLAGS (such as FLAGS_cinn_cudnn_deterministic) with paddle's FLAGS.
void SetCinnRuntimeFlags();
53

54
}  // namespace details
55 56 57 58 59

template <typename DeviceContext, typename T>
class CinnLaunchOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
60 61
    const auto& scope = ctx.scope();
    const auto& place = ctx.GetPlace();
62
    void* stream = details::GetStream<DeviceContext>(ctx);
63 64 65 66 67 68 69
    // Step 1. Find graph object and prepare input
    PADDLE_ENFORCE_EQ(ctx.HasAttr(kCompilationKey), true,
                      platform::errors::NotFound(
                          "No Attribute(%s) found for CinnLaunchOp operator.",
                          kCompilationKey));
    const auto& compilation_key =
        ctx.template Attr<std::string>(kCompilationKey);
70
    VLOG(4) << "CinnLaunchOp attribute(" << kCompilationKey << ") "
71 72
            << "value:\n"
            << CinnCompiler::GetInstance()->ReadableKey(compilation_key);
73

74
    std::map<std::string, const LoDTensor*> inputs_name2tensor;
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    std::vector<std::string> input_x_variable_names;
    std::vector<std::string> input_no_need_buffer_variable_names;
    auto add_name2tensor_fn = [&inputs_name2tensor](
        const std::vector<std::string>& variable_names,
        const std::vector<const LoDTensor*>& tensors) {
      std::transform(
          variable_names.begin(), variable_names.end(), tensors.begin(),
          std::inserter(inputs_name2tensor, inputs_name2tensor.end()),
          [](const std::string& name, const LoDTensor* tensor) {
            return std::make_pair(name, tensor);
          });
    };

    auto input_x_tensors = ctx.MultiInput<LoDTensor>(kX);
    if (!input_x_tensors.empty()) {
      input_x_variable_names = std::move(ctx.InputNames(kX));
      add_name2tensor_fn(input_x_variable_names, input_x_tensors);
    }
    auto input_no_need_buffer_tensors =
        ctx.MultiInput<LoDTensor>(kNoNeedBufferX);
    if (!input_no_need_buffer_tensors.empty()) {
      input_no_need_buffer_variable_names =
          std::move(ctx.InputNames(kNoNeedBufferX));
      add_name2tensor_fn(input_no_need_buffer_variable_names,
                         input_no_need_buffer_tensors);
    }
101 102

    // Step 2. Get compilation result of the graph
103
    auto target = details::PlaceToCinnTarget(place);
104
    const auto& cinn_compiled_object = CinnCompiler::GetInstance()->Compile(
105
        compilation_key, inputs_name2tensor, target, stream);
106
    details::DebugCinnCompiledResult(cinn_compiled_object);
107
    auto* launch_context = cinn_compiled_object.launch_context.get();
108

109
    // Step 3. Set CINN runtime FLAGS, such as FLAGS_cinn_cudnn_deterministic.
110 111
    details::SetCinnRuntimeFlags();

112 113 114 115 116 117 118 119 120 121 122 123
    // Step 4. Execute the compiled CINN instructions by a PE or
    //         by the CINN compiled program in sequential order
    if (FLAGS_enable_pe_launch_cinn) {
      VLOG(4) << "Execute the runtime graph by PE";
      framework::Scope& exec_scope = scope.NewScope();
      auto* pe = launch_context->InitializePE(place, &exec_scope);
      pe->RunWithoutFetch(launch_context->GetSkipEagerVars());
    } else {
      VLOG(4) << "Execute the compiled executable program";
      launch_context->UpdateCapturedEnv(scope, place);
      LaunchCinnExecution(cinn_compiled_object, *launch_context, stream);
    }
124
    VLOG(4) << "CinnLaunchOp launch execution done.";
125 126 127 128 129
  }
};

}  // namespace operators
}  // namespace paddle