pybind.cc 18.6 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
20
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
21
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
22
#include "paddle/framework/selected_rows.h"
23
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
24
#include "paddle/operators/cond_op.h"
25
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
26
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
27
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
28
#include "paddle/platform/enforce.h"
Q
qijun 已提交
29
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
30
#include "paddle/pybind/exception.h"
Q
qijun 已提交
31
#include "paddle/pybind/pybind.h"
32
#include "paddle/pybind/tensor_py.h"
33
#include "paddle/string/to_string.h"
34

35
namespace paddle {
36
namespace pybind {
37 38 39 40 41
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
42
bool IsCompileGPU() {
43
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
44 45 46 47 48 49
  return false;
#else
  return true;
#endif
}

50
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
51
  py::module m("core", "C++ core of PaddlePaddle");
52

53 54 55 56
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
57 58
  BindException(m);

59 60 61
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
62
      .def("get_dims",
63
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
64
      .def("set_dims",
Q
qijun 已提交
65
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
66
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
67 68
           })
      .def("alloc_float",
Y
Yu Yang 已提交
69
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
70
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
71
           })
Q
qijun 已提交
72
      .def("alloc_float",
Y
Yu Yang 已提交
73
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
74
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
75 76
           })
      .def("alloc_int",
Y
Yu Yang 已提交
77
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
78
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
79
           })
Q
qijun 已提交
80
      .def("alloc_int",
Y
Yu Yang 已提交
81
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
82
             self.mutable_data<int>(place);
Q
qijun 已提交
83
           })
Y
Yu Yang 已提交
84 85
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
86
      .def("set", PyCPUTensorSetFromArray<double>)
87
      .def("set", PyCPUTensorSetFromArray<int64_t>)
88
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
89 90
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
91
      .def("set", PyCUDATensorSetFromArray<double>)
92
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
93
#endif
94
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
95 96 97 98 99
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
100

101
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
102 103
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
104 105 106
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
107
#ifndef PADDLE_WITH_CUDA
108
            new (&instance) LoDTensor(lod);
109
#else
Y
Yu Yang 已提交
110
             LoD new_lod;
111 112
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
113
             new (&instance) LoDTensor(new_lod);
114
#endif
115
          })
Y
Yu Yang 已提交
116
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
117
      .def("set_lod",
118
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
119
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
120
             self.set_lod(lod);
121
#else
Y
Yu Yang 已提交
122
             LoD new_lod;
123 124 125 126
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
127
           })
128
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
129
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
130
        return self.lod();
131 132 133 134 135
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
136
               [](Vector<size_t> item) ->
137 138 139 140 141 142 143 144
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
145 146
      });

Q
qijun 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
160 161 162 163 164 165 166 167 168
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
169 170 171 172 173 174 175 176 177 178 179
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
180

181
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
182 183 184

All parameter, weight, gradient are variables in Paddle.
)DOC")
185
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
186
      .def("set_int",
187 188
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
189 190 191 192 193 194 195
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
196
      .def("get_tensor",
197 198
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
199 200
           },
           py::return_value_policy::reference)
Q
qijun 已提交
201 202 203 204 205
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
206
      .def("get_net",
D
dongzhihong 已提交
207 208
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
209
           },
Y
Yu Yang 已提交
210
           py::return_value_policy::reference);
211

212
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
213
      .def("var",
214
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
215
             return self.Var(name);
Y
Yu Yang 已提交
216
           },
217
           py::return_value_policy::reference)
218
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
219
      .def(py::init<>())
220
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
221
           py::return_value_policy::reference)
Y
Yu Yang 已提交
222
      .def("drop_kids", &Scope::DropKids);
223

Y
Yu Yang 已提交
224 225
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
226 227
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
228 229 230 231

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
232
      std::string str;
Y
Yu Yang 已提交
233
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
234
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
235 236
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
237 238
    return ret_values;
  });
239 240 241
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
242 243
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
244
  // clang-format off
Y
Yu Yang 已提交
245
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
246 247
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
248
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
249 250 251 252 253
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
254
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
255
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
256
#else
Q
qijun 已提交
257
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
258
#endif
Q
qijun 已提交
259
                  });
Q
qijun 已提交
260
  // clang-format on
Q
qijun 已提交
261

262 263 264
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
265

266 267 268
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
269

Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278 279 280
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
281 282 283 284 285 286 287 288 289
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
290
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
291 292 293 294 295 296
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
297
      .def("run",
298
           [](OperatorBase &self, const Scope &scope,
299 300 301 302
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
303 304 305 306 307 308 309
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
310 311
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
312
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
313
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
314 315 316 317
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
326 327
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
328 329 330 331
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
383
  // recurrent_op
Y
Yu Yang 已提交
384 385 386 387 388 389 390 391 392 393
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
394
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
395 396
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
397 398 399 400
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
401

402 403 404 405 406 407 408 409 410 411
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
412
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
413 414 415
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
416
      .def("set_step_unit",
417
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
418
               -> void { self.rnn.SetStepUnit(net.Clone()); })
419 420
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
421
               -> const TensorArray & { return self.rnn.state(name); })
422 423
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
424
               -> const TensorArray & { return self.rnn.step_input(name); })
425 426
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
427
               -> const TensorArray & { return self.rnn.step_output(name); });
428

Z
cond op  
zchen0211 已提交
429 430 431 432 433 434 435 436 437 438
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
439
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
440 441 442 443 444 445 446 447 448 449 450
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
451 452
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
Y
Yu Yang 已提交
453 454 455 456
      .def("run", [](Executor &self, ProgramDescBind *program_bind,
                     Scope *scope, int block_id) {
        self.Run(*program_bind->Proto(), scope, block_id);
      });
F
fengjiayi 已提交
457

458 459
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
460
  m.def("is_compile_gpu", IsCompileGPU);
461
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
462
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
463

F
fengjiayi 已提交
464 465 466 467
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
468

469
  return m.ptr();
L
Luo Tao 已提交
470
}
471
}  // namespace pybind
472
}  // namespace paddle