unique_op.h 13.2 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Z
Zhang Ting 已提交
16
#include <algorithm>
Z
zhoukunsheng 已提交
17
#include <cmath>
Z
Zhang Ting 已提交
18 19
#include <numeric>
#include <set>
Z
zhoukunsheng 已提交
20 21 22 23
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
Z
Zhang Ting 已提交
24
#include "paddle/fluid/operators/math/concat_and_split.h"
Z
zhoukunsheng 已提交
25
#include "paddle/fluid/operators/math/math_function.h"
Z
Zhang Ting 已提交
26
#include "paddle/fluid/operators/transpose_op.h"
Z
zhoukunsheng 已提交
27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

template <typename InT>
struct UniqueOpFunctor {
  framework::Tensor* out_;
  framework::Tensor* index_;
  const framework::Tensor* in_;
36
  framework::Tensor* count_;
Z
zhoukunsheng 已提交
37 38

  UniqueOpFunctor(framework::Tensor* out, framework::Tensor* index,
39 40 41
                  const framework::Tensor* in,
                  framework::Tensor* count = nullptr)
      : out_(out), index_(index), in_(in), count_(count) {}
Z
zhoukunsheng 已提交
42 43 44 45 46 47 48 49 50 51 52 53

  template <typename IndexT>
  void apply() const {
    auto* in_data = in_->data<InT>();
    auto* index_data = index_->mutable_data<IndexT>(platform::CPUPlace());

    int64_t j = 0;

    // TODO(fangzeyang): Should optimize performance here.
    std::unordered_map<InT, int64_t> dict;
    std::vector<InT> uniq;

54 55 56 57 58 59
    PADDLE_ENFORCE_LT(
        in_->numel(), pow(2, 31),
        platform::errors::InvalidArgument(
            "The num of Input(X) elements should be less then INT_MAX, "
            "but received num is %d.",
            in_->numel()));
Z
zhoukunsheng 已提交
60 61 62 63

    for (auto i = 0; i < in_->numel(); i++) {
      auto it = dict.find(in_data[i]);
      if (it == dict.end()) {
64 65
        dict.emplace(std::make_pair(in_data[i], j));
        uniq.emplace_back(in_data[i]);
Z
zhoukunsheng 已提交
66 67 68 69 70 71 72
        index_data[i] = static_cast<IndexT>(j);
        j++;
      } else {
        index_data[i] = static_cast<IndexT>(it->second);
      }
    }

73 74 75 76 77 78 79 80 81 82
    if (count_ != nullptr) {
      // Resize the count tensor dims to allocate the memory
      count_->Resize(framework::make_ddim({static_cast<int64_t>(uniq.size())}));
      IndexT* count_data = count_->mutable_data<IndexT>(platform::CPUPlace());
      // init count_data to 0
      memset(count_data, 0, uniq.size() * sizeof(IndexT));

      const auto& index_type = index_->type();
      bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                              index_type == framework::proto::VarType::INT64;
83 84 85 86 87 88 89 90 91
      PADDLE_ENFORCE_EQ(index_type_match, true,
                        platform::errors::InvalidArgument(
                            "Index holds the wrong type, it holds %s, "
                            "but desires to be %s or %s",
                            paddle::framework::DataTypeToString(index_type),
                            paddle::framework::DataTypeToString(
                                framework::proto::VarType::INT32),
                            paddle::framework::DataTypeToString(
                                framework::proto::VarType::INT64)));
92 93 94 95 96 97 98 99 100 101 102 103 104 105

      if (index_type == framework::proto::VarType::INT32) {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int32_t>(index)] += static_cast<IndexT>(1);
        }
      } else {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int64_t>(index)] += static_cast<IndexT>(1);
        }
      }
    }

Z
zhoukunsheng 已提交
106 107 108 109 110 111
    out_->Resize(framework::make_ddim({static_cast<int64_t>(uniq.size())}));
    auto out_data = out_->mutable_data<InT>(platform::CPUPlace());
    std::memcpy(out_data, uniq.data(), uniq.size() * sizeof(InT));
  }
};

Z
Zhang Ting 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static std::vector<framework::Tensor> Unbind(const framework::Tensor& in) {
  int64_t size = in.dims()[0];
  std::vector<framework::Tensor> tensors(size);
  for (int64_t i = 0; i < size; ++i) {
    tensors[i] = in.Slice(i, i + 1);
  }
  return tensors;
}

template <typename T>
static bool Equal(const framework::Tensor& a, const framework::Tensor& b) {
  if (a.numel() != b.numel()) {
    return false;
  }
  for (int64_t i = 0; i < a.numel(); ++i) {
    if (a.data<T>()[i] != b.data<T>()[i]) {
      return false;
    }
  }
  return true;
}

Z
zhoukunsheng 已提交
134
template <typename T>
Z
Zhang Ting 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static void UniqueFlattendTensor(const framework::ExecutionContext& context,
                                 const framework::Tensor& in,
                                 framework::Tensor* out, bool return_index,
                                 bool return_inverse, bool return_counts) {
  const T* in_data = in.data<T>();
  std::set<T> unique(in_data, in_data + in.numel());
  out->Resize(framework::make_ddim({static_cast<int64_t>(unique.size())}));
  auto out_data = out->mutable_data<T>(context.GetPlace());
  std::copy(unique.begin(), unique.end(), out_data);

  if (return_index) {
    auto* indices = context.Output<framework::Tensor>("Indices");
    indices->Resize(framework::make_ddim({out->numel()}));
    auto indices_data = indices->mutable_data<int64_t>(context.GetPlace());
    std::unordered_map<T, int64_t> indices_map;
    indices_map.reserve(out->numel());
    for (int64_t i = 0; i < in.numel(); ++i) {
      if (indices_map.find(in_data[i]) != indices_map.end()) continue;
      indices_map[in_data[i]] = i;
    }
    for (int64_t i = 0; i < out->numel(); ++i) {
      indices_data[i] = indices_map[out_data[i]];
    }
  }

  if (return_inverse) {
    auto* inverse = context.Output<framework::Tensor>("Index");
    inverse->Resize(framework::make_ddim({in.numel()}));
    auto inverse_data = inverse->mutable_data<int64_t>(context.GetPlace());
    std::unordered_map<T, int64_t> inverse_map;
    inverse_map.reserve(out->numel());
    for (int64_t i = 0; i < out->numel(); ++i) {
      inverse_map[out_data[i]] = i;
    }
    for (int64_t i = 0; i < in.numel(); ++i) {
      inverse_data[i] = inverse_map[in_data[i]];
    }
  }

  if (return_counts) {
    auto* count = context.Output<framework::Tensor>("Counts");
    count->Resize(framework::make_ddim({out->numel()}));
    auto count_data = count->mutable_data<int64_t>(context.GetPlace());
    std::unordered_map<T, int64_t> counts_map;
    counts_map.reserve(out->numel());
    for (int64_t i = 0; i < out->numel(); ++i) {
      counts_map[out_data[i]] = 0;
    }
    for (int64_t i = 0; i < in.numel(); i++) {
      counts_map[in_data[i]] += 1;
    }
    for (int64_t i = 0; i < out->numel(); i++) {
      count_data[i] = counts_map[out_data[i]];
    }
  }
}

template <class ForwardIt, typename T>
static ForwardIt UniqueDimImpl(const framework::ExecutionContext& context,
                               ForwardIt first, ForwardIt last,
                               const std::vector<int64_t>& sorted_indices_vec,
                               std::vector<int64_t>* inverse_vec,
                               std::vector<int64_t>* counts_vec,
                               std::vector<int64_t>* indices_vec) {
  if (first == last) {
    return last;
  }

  (*inverse_vec)[sorted_indices_vec[0]] = 0;
  (*counts_vec)[0] = 1;
  (*indices_vec)[0] = sorted_indices_vec[0];

  ForwardIt begin = first;
  ForwardIt result = first;

  while (++first != last) {
    int64_t idx_first = std::distance(begin, first);
    int64_t idx_result = std::distance(begin, result);
    if (!Equal<T>(*result, *first)) {
      if (++result != first) {
        *result = std::move(*first);
      }
      idx_result += 1;
      (*indices_vec)[idx_result] = sorted_indices_vec[idx_first];
    }
    (*inverse_vec)[sorted_indices_vec[idx_first]] = idx_result;
    (*counts_vec)[idx_result] += 1;
  }
  return ++result;
}

template <typename DeviceContext, typename T>
static void UniqueDim(const framework::ExecutionContext& context,
                      const framework::Tensor& in, framework::Tensor* out,
                      bool return_index, bool return_inverse,
                      bool return_counts, int axis) {
  // transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2]
  std::vector<int> permute(in.dims().size());
  std::iota(permute.begin(), permute.end(), 0);
  permute[axis] = 0;
  permute[0] = axis;
  std::vector<int64_t> in_trans_dims_vec(framework::vectorize(in.dims()));
  in_trans_dims_vec[axis] = in.dims()[0];
  in_trans_dims_vec[0] = in.dims()[axis];
  framework::Tensor in_trans;
  framework::DDim in_trans_dims = framework::make_ddim(in_trans_dims_vec);
  in_trans.Resize(in_trans_dims);
  in_trans.mutable_data<T>(context.GetPlace());
  auto& dev_ctx = context.template device_context<DeviceContext>();
  TransCompute<DeviceContext, T>(in.dims().size(), dev_ctx, in, &in_trans,
                                 permute);
  // reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
  framework::DDim in_trans_flat_dims =
      framework::flatten_to_2d(in_trans_dims, 1);
  in_trans.Resize(in_trans_flat_dims);

  // sort indices
  std::vector<int64_t> sorted_indices_vec(in_trans.dims()[0]);
  std::iota(sorted_indices_vec.begin(), sorted_indices_vec.end(), 0);
  int64_t col = in_trans.dims()[1];
  const T* in_trans_data = in_trans.data<T>();
  std::sort(sorted_indices_vec.begin(), sorted_indices_vec.end(),
            [&](int64_t a, int64_t b) -> bool {
              for (int64_t i = 0; i < col; ++i) {
                T lhs = in_trans_data[i + a * col];
                T rhs = in_trans_data[i + b * col];
                if (lhs < rhs) {
                  return true;
                } else if (lhs > rhs) {
                  return false;
                }
              }
              return false;
            });

  // sort tensor according to indices
  framework::Tensor input_sorted;
  input_sorted.Resize(in_trans_dims);
  input_sorted.mutable_data<T>(context.GetPlace());
  T* input_sorted_data = input_sorted.data<T>();
  for (size_t i = 0; i < sorted_indices_vec.size(); ++i) {
    memcpy(input_sorted_data + i * col,
           in_trans_data + sorted_indices_vec[i] * col, col * sizeof(T));
  }

  std::vector<framework::Tensor> input_unbind = Unbind(input_sorted);
  std::vector<int64_t> inverse_vec(sorted_indices_vec.size(), 0);
  std::vector<int64_t> counts_vec(sorted_indices_vec.size(), 0);
  std::vector<int64_t> indices_vec(sorted_indices_vec.size(), 0);
  auto last = UniqueDimImpl<std::vector<framework::Tensor>::iterator, T>(
      context, input_unbind.begin(), input_unbind.end(), sorted_indices_vec,
      &inverse_vec, &counts_vec, &indices_vec);
  input_unbind.erase(last, input_unbind.end());
  counts_vec.erase(counts_vec.begin() + input_unbind.size(), counts_vec.end());
  indices_vec.erase(indices_vec.begin() + input_unbind.size(),
                    indices_vec.end());

  math::ConcatFunctor<DeviceContext, T> concat_functor;
  framework::Tensor out_trans;
  std::vector<int64_t> out_trans_dims_vec = in_trans_dims_vec;
  out_trans_dims_vec[0] = input_unbind.size();
  out_trans.Resize(framework::make_ddim(out_trans_dims_vec));
  out_trans.mutable_data<T>(context.GetPlace());
  std::swap(out_trans_dims_vec[0], out_trans_dims_vec[axis]);
  out->Resize(framework::make_ddim(out_trans_dims_vec));
  out->mutable_data<T>(context.GetPlace());
  concat_functor(dev_ctx, input_unbind, 0, &out_trans);
  TransCompute<DeviceContext, T>(out_trans.dims().size(), dev_ctx, out_trans,
                                 out, permute);

  if (return_inverse) {
    auto* inverse = context.Output<framework::Tensor>("Index");
    framework::TensorFromVector(inverse_vec, context.device_context(), inverse);
  }

  if (return_counts) {
    auto* count = context.Output<framework::Tensor>("Counts");
    framework::TensorFromVector(counts_vec, context.device_context(), count);
  }

  if (return_index) {
    auto* indices = context.Output<framework::Tensor>("Indices");
    framework::TensorFromVector(indices_vec, context.device_context(), indices);
  }
}

template <typename DeviceContext, typename T>
Z
zhoukunsheng 已提交
322 323 324 325 326
class UniqueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
Z
Zhang Ting 已提交
327 328 329 330 331 332 333 334
    if (!context.Attr<bool>("is_sorted")) {
      auto data_type = static_cast<framework::proto::VarType::Type>(
          context.Attr<int>("dtype"));
      auto* index = context.Output<framework::Tensor>("Index");

      framework::VisitDataType(data_type, UniqueOpFunctor<T>(out, index, x));
      return;
    }
Z
zhoukunsheng 已提交
335

Z
Zhang Ting 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348
    std::vector<int> axis_vec = context.Attr<std::vector<int>>("axis");
    bool return_index = context.Attr<bool>("return_index");
    bool return_inverse = context.Attr<bool>("return_inverse");
    bool return_counts = context.Attr<bool>("return_counts");

    if (axis_vec.empty()) {
      UniqueFlattendTensor<T>(context, *x, out, return_index, return_inverse,
                              return_counts);
    } else {
      int axis = axis_vec[0];
      UniqueDim<DeviceContext, T>(context, *x, out, return_index,
                                  return_inverse, return_counts, axis);
    }
Z
zhoukunsheng 已提交
349 350 351 352 353
  }
};

}  // namespace operators
}  // namespace paddle