unique_op.h 4.1 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cmath>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename InT>
struct UniqueOpFunctor {
  framework::Tensor* out_;
  framework::Tensor* index_;
  const framework::Tensor* in_;
31
  framework::Tensor* count_;
Z
zhoukunsheng 已提交
32 33

  UniqueOpFunctor(framework::Tensor* out, framework::Tensor* index,
34 35 36
                  const framework::Tensor* in,
                  framework::Tensor* count = nullptr)
      : out_(out), index_(index), in_(in), count_(count) {}
Z
zhoukunsheng 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

  template <typename IndexT>
  void apply() const {
    auto* in_data = in_->data<InT>();
    auto* index_data = index_->mutable_data<IndexT>(platform::CPUPlace());

    int64_t j = 0;

    // TODO(fangzeyang): Should optimize performance here.
    std::unordered_map<InT, int64_t> dict;
    std::vector<InT> uniq;

    PADDLE_ENFORCE(in_->numel() < pow(2, 31),
                   "numel of Unique op input should less than INT_MAX");

    for (auto i = 0; i < in_->numel(); i++) {
      auto it = dict.find(in_data[i]);
      if (it == dict.end()) {
55 56
        dict.emplace(std::make_pair(in_data[i], j));
        uniq.emplace_back(in_data[i]);
Z
zhoukunsheng 已提交
57 58 59 60 61 62 63
        index_data[i] = static_cast<IndexT>(j);
        j++;
      } else {
        index_data[i] = static_cast<IndexT>(it->second);
      }
    }

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    if (count_ != nullptr) {
      // Resize the count tensor dims to allocate the memory
      count_->Resize(framework::make_ddim({static_cast<int64_t>(uniq.size())}));
      IndexT* count_data = count_->mutable_data<IndexT>(platform::CPUPlace());
      // init count_data to 0
      memset(count_data, 0, uniq.size() * sizeof(IndexT));

      const auto& index_type = index_->type();
      bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                              index_type == framework::proto::VarType::INT64;
      PADDLE_ENFORCE(
          index_type_match,
          "Index holds the wrong type, it holds %s, but desires to be %s or %s",
          paddle::framework::DataTypeToString(index_type),
          paddle::framework::DataTypeToString(framework::proto::VarType::INT32),
          paddle::framework::DataTypeToString(
              framework::proto::VarType::INT64));

      if (index_type == framework::proto::VarType::INT32) {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int32_t>(index)] += static_cast<IndexT>(1);
        }
      } else {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int64_t>(index)] += static_cast<IndexT>(1);
        }
      }
    }

Z
zhoukunsheng 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    out_->Resize(framework::make_ddim({static_cast<int64_t>(uniq.size())}));
    auto out_data = out_->mutable_data<InT>(platform::CPUPlace());
    std::memcpy(out_data, uniq.data(), uniq.size() * sizeof(InT));
  }
};

template <typename T>
class UniqueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto data_type = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    auto* x = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    auto* index = context.Output<framework::Tensor>("Index");

    framework::VisitDataType(data_type, UniqueOpFunctor<T>(out, index, x));
  }
};

}  // namespace operators
}  // namespace paddle