utils.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from collections import OrderedDict

import numpy as np

19
import paddle
20
from paddle import _legacy_C_ops
21 22
from paddle.distributed.parallel import _split_tensors
from paddle.fluid import core
23

24
__all__ = []
25

26 27 28 29
FLOAT_TYPE_DICT = {
    paddle.float16: "float16",
    paddle.float32: "float32",
    paddle.float64: "float64",
30
    paddle.bfloat16: "bfloat16",
31 32 33 34 35 36 37
}

PADDLE_TO_NUMBER = {
    paddle.float16: 0,
    paddle.float32: 1,
    paddle.float64: 2,
    paddle.int32: 3,
38
    paddle.int64: 4,
39
    paddle.bfloat16: 5,
40 41 42 43 44 45 46
}

NUMBER_TO_DTYPE = {
    0: "float16",
    1: "float32",
    2: "float64",
    3: "int32",
47
    4: "int64",
48
    5: "bfloat16",
49
}
50 51 52 53


def is_float_tensor(tensor):
    """Is a float tensor"""
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    return tensor.dtype in FLOAT_TYPE_DICT.keys()


def get_tensor_dtype(dtype):
    assert dtype in FLOAT_TYPE_DICT.keys()
    return FLOAT_TYPE_DICT[dtype]


def paddle_2_number(dtype):
    assert dtype in PADDLE_TO_NUMBER.keys()
    return PADDLE_TO_NUMBER[dtype]


def number_2_dtype(number):
    assert number in NUMBER_TO_DTYPE.keys()
    return NUMBER_TO_DTYPE[number]
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87


def get_tensor_bytes(tensor):
    """Get the bytes a tensor occupied."""
    elem_size = None
    if tensor.dtype == paddle.float32:
        elem_size = 4
    elif tensor.dtype == paddle.float64:
        elem_size = 8
    elif tensor.dtype == paddle.int64:
        elem_size = 8
    elif tensor.dtype == paddle.int32:
        elem_size = 4
    elif tensor.dtype == paddle.float16:
        elem_size = 2
    elif tensor.dtype == paddle.int8:
        elem_size = 1
    else:
88
        raise ValueError(f"unknown data type: {tensor.dtype}")
89
    return tensor.numel() * elem_size
90 91 92 93


def _all_gather(tensor, group=None, use_calc_stream=True):
    """
94
    The main difference with paddle.distributed.all_gather:
95 96 97 98 99
    no need to pass in tensor_list, the returned tensor is spliced
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
100 101 102 103 104 105 106 107 108 109 110 111 112 113
    nranks = (
        paddle.distributed.collective._get_global_group().nranks
        if group is None
        else group.nranks
    )
    return _legacy_C_ops.c_allgather(
        tensor,
        'use_calc_stream',
        use_calc_stream,
        'ring_id',
        ring_id,
        'nranks',
        nranks,
    )
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220


class FusedAllReduceBuffer:
    def __init__(self, id, params, comm_group, acc_steps=1):
        self._id = id
        self._params = params
        self._acc_steps = acc_steps
        self._comm_group = comm_group

        self._tasks = []
        self._grads = []
        self._params_step_dict = {}
        self._params_checked_in = 0
        self._coalesced_grads_and_grad_vars = []

        self._init_step_dict()

    def _init_step_dict(self):
        for p in self._params:
            self._params_step_dict[p.name] = 0

    def _reset_params_checked_in(self):
        self._tasks.clear()
        self._grads.clear()
        self._init_step_dict()
        self._params_checked_in = 0
        self._coalesced_grads_and_grad_vars.clear()

    @property
    def _all_params_checked_in(self):
        return (
            len(self._params) == self._params_checked_in
            and len(self._params_step_dict) == 0
        )

    def add_grad(self, param):
        assert param.name in self._params_step_dict

        if self._params_step_dict[param.name] == 0:
            if getattr(param, "main_grad", None) is not None:
                assert param.grad is None
                self._grads.append(param.main_grad)
            else:
                self._grads.append(param.grad)

        self._params_step_dict[param.name] += 1

        if self._params_step_dict[param.name] == self._acc_steps:
            self._params_checked_in += 1
            self._params_step_dict.pop(param.name)

        if self._all_params_checked_in:
            self._fused_allreduce_grads()

    def _fused_allreduce_grads(self):
        assert self._all_params_checked_in
        flattened_vars = []
        g_var_shapes = []

        for g_var in self._grads:
            g_var_shapes.append(g_var.shape)
            flattened_vars.append(
                paddle.reshape(x=g_var, shape=[np.prod(g_var.shape)])
            )

        coalesced_grad = paddle.concat(flattened_vars)
        self._coalesced_grads_and_grad_vars.append(
            [coalesced_grad, self._grads, g_var_shapes]
        )

        for coalesced_grad, _, _ in self._coalesced_grads_and_grad_vars:
            self._tasks.append(
                paddle.distributed.all_reduce(
                    coalesced_grad, group=self._comm_group, sync_op=False
                )
            )

    def scale_and_split_grads(self):
        for task in self._tasks:
            task.wait()

        scale_factor = 1.0 / self._comm_group.nranks
        for coalesced_grad, _, _ in self._coalesced_grads_and_grad_vars:
            coalesced_grad.scale_(scale_factor)

        _split_tensors(self._coalesced_grads_and_grad_vars)
        self._reset_params_checked_in()


def assign_group_by_size(parameters, group_size=128 * 1024 * 1024):

    group_idx = 0
    memory_counter = 0
    var_groups = OrderedDict()
    dtype = parameters[0].dtype

    for var in parameters:
        bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
        if memory_counter < group_size and dtype == var.dtype:
            memory_counter += bytes
        else:
            memory_counter = bytes
            dtype = var.dtype
            group_idx += 1
        var_groups.setdefault(group_idx, []).append(var)

    return var_groups